Artículos de revistas
Tailored Silica-antibiotic Nanoparticles: Overcoming Bacterial Resistance With Low Cytotoxicity
Registro en:
Langmuir. American Chemical Society, v. 30, n. 25, p. 7456 - 7464, 2014.
7437463
10.1021/la4046435
2-s2.0-84903693977
Autor
Capeletti L.B.
De Oliveira L.F.
Goncalves K.D.A.
De Oliveira J.F.A.
Saito A.
Kobarg J.
Santos J.H.Z.D.
Cardoso M.B.
Institución
Resumen
New and more aggressive antibiotic resistant bacteria arise at an alarming rate and represent an ever-growing challenge to global health care systems. Consequently, the development of new antimicrobial agents is required to overcome the inefficiency of conventional antibiotics and bypass treatment limitations related to these pathologies. In this study, we present a synthesis protocol, which was able to entrap tetracycline antibiotic into silica nanospheres. Bactericidal efficacy of these structures was tested against bacteria that were susceptible and resistant to antibiotics. For nonresistant bacteria, our composite had bactericidal efficiency comparable to that of free-tetracycline. On the other hand, the synthesized composites were able to avoid bacterial growth of resistant bacteria while free-tetracycline has shown no significant bactericidal effect. Finally, we have investigated the cytotoxicity of these nanoparticles against mammalian cells to check any possible poisoning effect. It was found that these nanospheres are not apoptosis-inducers and only a reduction on the cell replication rate was seen when compared to the control without nanoparticles. © 2014 American Chemical Society. 30 25 7456 7464 Andersson, D.I., Hughes, D., Antibiotic resistance and its cost: Is it possible to reverse resistance? (2010) Nat. Rev. Microbiol., 8, pp. 260-271 Kaufmann, B.B., Hung, D.T., The Fast Track to Multidrug Resistance (2010) Mol. Cell, 37, pp. 297-298 Levy, S.B., Marshall, B., Antibacterial resistance worldwide: Causes, challenges and responses (2004) Nat. Med., 10, pp. 122-S129 Levy, S.B., Obrien, T.F., Global Antimicrobial Resistance Alerts and Implications (2005) Clin. Infect. Dis., 41, p. 219. , Alliance for the Prudent Use of Antibiotics - S220 (2012) Antimicrobial Resistance, Fact Sheet, 194. , World Health Organization. World Health Organization: Geneva (2009) Technical Report: The Bacterial Challenge: Time to React, , ECDC-EMEA. European Centre for Disease Prevention and Control: Stockholm Leung, E., Weil, D.E., Raviglione, M., Nakatani, H., (2011) The WHO Policy Package to Combat Antimicrobial Resistance, p. 390. , Bulletin of the World Health Organization World Health Organization World Health Day Antimicrobial Resistance Technical Working Group: Geneva - 392 Roberts, R.R., Hota, B., Ahmad, I., Scott, R.D., Foster, S.D., Abbasi, F., Schabowski, S., Weinstein, R.A., Hospital and Societal Costs of Antimicrobial-Resistant Infections in a Chicago Teaching Hospital: Implications for Antibiotic Stewardship (2009) Clin. Infect. Dis., 49, pp. 1175-1184 Neidell, M.J., Cohen, B., Furuya, Y., Hill, J., Jeon, C.Y., Glied, S., Larson, E.L., Costs of Healthcare- and Community-Associated Infections with Antimicrobial-Resistant Versus Antimicrobial-Susceptible Organisms (2012) Clin. Infect. Dis., 55, pp. 807-815 Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Woodford, N., Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study (2010) Lancet Infect. Dis., 10, pp. 597-602 Bertholet, S., Ireton, G.C., Ordway, D.J., Windish, H.P., Pine, S.O., Kahn, M., Phan, T., Reed, S.G., A Defined Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug-Resistant Mycobacterium tuberculosis (2010) Sci. Transl. Med., 2, pp. 53-74 Hernandez, V., Crépin, T., Palencia, A., Cusack, S., Akama, T., Baker, S.J., Bu, W., Plattner, J.J., Discovery of a Novel Class of Boron-Based Antibacterials with Activity against Gram-Negative Bacteria (2013) Antimicrob. Agents Chem., 57, pp. 1394-1403 Fischbach, M.A., Walsh, C.T., Antibiotics for Emerging Pathogens (2009) Science, 325, pp. 1089-1093 Mitchell, G.J., Wiesenfeld, K., Nelson, D.C., Weitz, J.S., Critical cell wall hole size for lysis in Gram-positive bacteria (2013) J. R. Soc., Interface, 10, p. 20120892 Neu, H.C., The Crisis in Antibiotic Resistance (1992) Science, 257, pp. 1064-1073 Cai, X., Zhang, J., Ouyang, Y., Ma, D., Tan, S., Peng, Y., Bacteria-Adsorbed Palygorskite Stabilizes the Quaternary Phosphonium Salt with Specific-Targeting Capability, Long-Term Antibacterial Activity, and Lower Cytotoxicity (2013) Langmuir, 29, pp. 5279-5285 Hu, R., Li, G., Jiang, Y., Zhang, Y., Zou, J.-J., Wang, L., Zhang, X., Silver-Zwitterion Organic-Inorganic Nanocomposite with Antimicrobial and Antiadhesive Capabilities (2013) Langmuir, 29, pp. 3773-3779 Furuya, E.Y., Lowy, F.D., Antimicrobial-resistant bacteria in the community setting (2006) Nature Reviews Microbiology, 4 (1), pp. 36-45. , DOI 10.1038/nrmicro1325, PII N1325 Cohen, M.L., Wong, E.S., Falkow, S., Common R-plasmids in Staphylococcus aureus and Staphylococcus epidermidis during a nosocomial Staphylococcus aureus outbreak (1982) Antimicrobial Agents and Chemotherapy, 21 (2), pp. 210-215 Björk, E.M., Söderlind, F., Odén, M., Tuning the Shape of Mesoporous Silica Particles by Alterations in Parameter Space: From Rods to Platelets (2013) Langmuir, 29, pp. 13551-13561 Kataoka, S., Takeuchi, Y., Kawai, A., Yamada, M., Kamimura, Y., Endo, A., Controlled Formation of Silica Structures Using Siloxane/Block Copolymer Complexes Prepared in Various Solvent Mixtures (2013) Langmuir, 29, pp. 13562-13567 Irvine, D.J., Drug delivery: One nanoparticle, one kill (2011) Nat. Mater., 10, pp. 342-343 Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R., Nanocarriers as an emerging platform for cancer therapy (2007) Nature Nanotechnology, 2 (12), pp. 751-760. , DOI 10.1038/nnano.2007.387, PII NNANO2007387 Mamaeva, V., Rosenholm, J.M., Bate-Eya, L.T., Bergman, L., Peuhu, E., Duchanoy, A., Fortelius, L.E., Sahlgren, C., Mesoporous Silica Nanoparticles as Drug Delivery Systems for Targeted Inhibition of Notch Signaling in Cancer (2011) Mol. Ther., 19, pp. 1538-1546 Lin, Y.-S., Tsai, C.-P., Huang, H.-Y., Kuo, C.-T., Hung, Y., Huang, D.-M., Chen, Y.-C., Mou, C.-Y., Well-ordered mesoporous silica nanoparticles as cell markers (2005) Chemistry of Materials, 17 (18), pp. 4570-4573. , DOI 10.1021/cm051014c Lee, S.B., Kim, H.L., Jeong, H.-J., Lim, S.T., Sohn, M.-H., Kim, D.W., Mesoporous Silica Nanoparticle Pretargeting for PET Imaging Based on a Rapid Bioorthogonal Reaction in a Living Body (2013) Angew. Chem., Int. Ed., 52, pp. 1-5 Xue, M., Findenegg, G.H., Lysozyme as a pH-Responsive Valve for the Controlled Release of Guest Molecules from Mesoporous Silica (2012) Langmuir, 28, pp. 17578-17584 Park, H.S., Kim, C.W., Lee, H.J., Choi, J.H., Lee, S.G., Yun, Y.-P., Kwon, I.C., Lee, S.C., A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery (2010) Nanotechnology, 21, p. 225101 Maham, A., Tang, Z., Wu, H., Wang, J., Lin, Y., Protein-Based Nanomedicine Platforms for Drug Delivery (2009) Small, 5, pp. 1706-1721 Kim, M.-H., Na, H.-K., Kim, Y.-K., Ryoo, S.-R., Cho, H.S., Lee, K.E., Jeon, H., Min, D.-H., Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery (2011) ACS Nano, 5, pp. 3568-3576 De, M., Ghosh, P.S., Rotello, V.M., Applications of Nanoparticles in Biology (2008) Adv. Mater., 20, pp. 4225-4241 Torney, F., Trewyn, B.G., Lin, V.S.-Y., Wang, K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants (2007) Nature Nanotechnology, 2 (5), pp. 295-300. , DOI 10.1038/nnano.2007.108, PII NNANO2007108 Ambrogio, M.W., Frasconi, M., Yilmaz, M.D., Chen, X., New Methods for Improved Characterization of Silica Nanoparticle-Based Drug Delivery Systems (2013) Langmuir, 29, pp. 15386-15393 Suteewong, T., Sai, H., Hovden, R., Muller, D., Bradbury, M.S., Gruner, S.M., Wiesner, U., Multicompartment Mesoporous Silica Nanoparticles with Branched Shapes: An Epitaxial Growth Mechanism (2013) Science, 340, pp. 337-341 Tang, F., Li, L., Chen, D., Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery (2012) Adv. Mater., 24, pp. 1504-1534 Vivero-Escoto, J.L., Slowing, I.I., Trewyn, B.G., Lin, V.S.Y., Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery (2010) Small, 6, pp. 1952-1967 Vallet-Regi, M., Balas, F., Arcos, D., Mesoporous materials for drug delivery (2007) Angewandte Chemie - International Edition, 46 (40), pp. 7548-7558. , DOI 10.1002/anie.200604488 Botequim, D., Maia, J., Lino, M.M.F., Lopes, L.M.F., Simões, P.N., Ilharco, L.M., Ferreira, L., Nanoparticles and Surfaces Presenting Antifungal, Antibacterial and Antiviral Properties (2012) Langmuir, 28, pp. 7646-7656 Brinker, C.J., Scherer, G.W., (1990) Sol-gel Science - The Physics and Chemistry of Sol-gel Processing, , Academic Press Inc. San Diego Dal Lago, V., De Oliveira, L.F., Goncalves, K.D., Kobarg, J., Cardoso, M.B., Size-selective silver nanoparticles: Future of biomedical devices with enhanced bactericidal properties (2011) J. Mater. Chem., 21, pp. 12267-12273 De Souza Silva, E.J.M., Pastorello, M., Kobarg, J., Cardoso, M.B., Mazali, I.O., Selective Synthesis of Silver Nanoparticles onto Potassium Hexaniobate: Structural Organisation with Bactericidal Properties (2013) ChemPhysChem, 14, pp. 4075-4083 Raghupathi, K.R., Koodali, R.T., Manna, A.C., Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles (2011) Langmuir, 27, pp. 4020-4028 Griffin, M.O., Ceballos, G., Villarreal, F.J., Tetracycline compounds with non-antimicrobial organ protective properties: Possible mechanisms of action (2011) Pharmacol. Res., 63, pp. 102-107 Saenger, W., Orth, P., Kisker, C., Hillen, W., Hinrichs, W., The Tetracycline Repressor-A Paradigm for a Biological Switch (2000) Angew. Chem., Int. Ed., 39, pp. 2042-2052 Chopra, I., Roberts, M., Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance (2001) Microbiol. Mol. Biol. Rev., 65, p. 232 Jiang, X.B., Shi, L., Distribution of tetracycline and trimethoprim/sulfamethoxazole resistance genes in aerobic bacteria isolated from cooked meat products in Guangzhou, China (2013) Food Control, 30, pp. 30-34 Walczak, J.J., Bardy, S.L., Feriancikova, L., Xu, S., Comparison of the Transport of Tetracycline-Resistant and Tetracycline-Susceptible Escherichia coli Isolated from Lake Michigan (2011) Water, Air, Soil Pollut., 222, pp. 305-314 McKenna, M., Antibiotic resistance: The last resort (2013) Nature, 499, pp. 394-396 Moonan, P.K., Teeter, L.D., Salcedo, K., Ghosh, S., Ahuja, S.D., Flood, J., Graviss, E.A., Transmission of multidrug-resistant tuberculosis in the USA: A cross-sectional study (2013) Lancet Infect. Dis., 13, pp. 777-784 De Oliveira, L.F., Goncalves, D.K.A., Boreli, F.H., Kobarg, J., Cardoso, M.B., Mechanism of interaction between colloids and bacteria as evidenced by tailored silica-lysozyme composites (2012) J. Mater. Chem., 22, pp. 22851-22858 Errington, J., Hultgren, S.J., Caparon, M., (2007) Cells, , Lewin, B. Cassimeris, L. Lingappa, V. R. Plopper, G. Jones and Bartlett Publishers: Sudbury, MA Lin, Y.-S., Haynes, C.L., Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity (2010) J. Am. Chem. Soc., 132, pp. 4834-4842 Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Thompson, M., Understanding biophysicochemical interactions at the nano-bio interface (2009) Nat. Mater., 8, pp. 543-557 Slowing, I.I., Wu, C.-W., Vivero-Escoto, J.L., Lin, V.S.Y., Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells (2009) Small, 5, pp. 57-62 Chun, A.L., Silica nanoparticles: Keep the red stuff in (2008) Nat. Nanotechnol., , 10.1038/nnano.2008.402 Mager, M.D., Lapointe, V., Stevens, M.M., Exploring and exploiting chemistry at the cell surface (2011) Nat. Chem., 3, pp. 582-589 Frohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles (2012) Int. J. Nanomed., 7, pp. 5577-5591 Leirose, G.D.S., Cardoso, M.B., Silica-Maltose Composites: Obtaining Drug Carrier Systems Through Tailored Ultrastructural Nanoparticles (2011) J. Pharm. Sci., 100, pp. 2826-2834 De Oliveira, J.F.A., Cardoso, M.B., Partial Aggregation of Silver Nanoparticles Induced by Capping and Reducing Agents Competition (2014) Langmuir, 30, pp. 4879-4886 Dreiss, C.A., Jack, K.S., Parker, A.P., On the absolute calibration of bench-top small-angle X-ray scattering instruments: A comparison of different standard methods (2006) J. Appl. Crystallogr., 39, pp. 32-38