dc.creator | Capeletti L.B. | |
dc.creator | De Oliveira L.F. | |
dc.creator | Goncalves K.D.A. | |
dc.creator | De Oliveira J.F.A. | |
dc.creator | Saito A. | |
dc.creator | Kobarg J. | |
dc.creator | Santos J.H.Z.D. | |
dc.creator | Cardoso M.B. | |
dc.date | 2014 | |
dc.date | 2015-06-25T18:05:56Z | |
dc.date | 2015-11-26T15:06:53Z | |
dc.date | 2015-06-25T18:05:56Z | |
dc.date | 2015-11-26T15:06:53Z | |
dc.date.accessioned | 2018-03-28T22:17:17Z | |
dc.date.available | 2018-03-28T22:17:17Z | |
dc.identifier | | |
dc.identifier | Langmuir. American Chemical Society, v. 30, n. 25, p. 7456 - 7464, 2014. | |
dc.identifier | 7437463 | |
dc.identifier | 10.1021/la4046435 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84903693977&partnerID=40&md5=e7402c0de715eafc756b9dd71fa9a056 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/88191 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/88191 | |
dc.identifier | 2-s2.0-84903693977 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1257328 | |
dc.description | New and more aggressive antibiotic resistant bacteria arise at an alarming rate and represent an ever-growing challenge to global health care systems. Consequently, the development of new antimicrobial agents is required to overcome the inefficiency of conventional antibiotics and bypass treatment limitations related to these pathologies. In this study, we present a synthesis protocol, which was able to entrap tetracycline antibiotic into silica nanospheres. Bactericidal efficacy of these structures was tested against bacteria that were susceptible and resistant to antibiotics. For nonresistant bacteria, our composite had bactericidal efficiency comparable to that of free-tetracycline. On the other hand, the synthesized composites were able to avoid bacterial growth of resistant bacteria while free-tetracycline has shown no significant bactericidal effect. Finally, we have investigated the cytotoxicity of these nanoparticles against mammalian cells to check any possible poisoning effect. It was found that these nanospheres are not apoptosis-inducers and only a reduction on the cell replication rate was seen when compared to the control without nanoparticles. © 2014 American Chemical Society. | |
dc.description | 30 | |
dc.description | 25 | |
dc.description | 7456 | |
dc.description | 7464 | |
dc.description | Andersson, D.I., Hughes, D., Antibiotic resistance and its cost: Is it possible to reverse resistance? (2010) Nat. Rev. Microbiol., 8, pp. 260-271 | |
dc.description | Kaufmann, B.B., Hung, D.T., The Fast Track to Multidrug Resistance (2010) Mol. Cell, 37, pp. 297-298 | |
dc.description | Levy, S.B., Marshall, B., Antibacterial resistance worldwide: Causes, challenges and responses (2004) Nat. Med., 10, pp. 122-S129 | |
dc.description | Levy, S.B., Obrien, T.F., Global Antimicrobial Resistance Alerts and Implications (2005) Clin. Infect. Dis., 41, p. 219. , Alliance for the Prudent Use of Antibiotics - S220 | |
dc.description | (2012) Antimicrobial Resistance, Fact Sheet, 194. , World Health Organization. World Health Organization: Geneva | |
dc.description | (2009) Technical Report: The Bacterial Challenge: Time to React, , ECDC-EMEA. European Centre for Disease Prevention and Control: Stockholm | |
dc.description | Leung, E., Weil, D.E., Raviglione, M., Nakatani, H., (2011) The WHO Policy Package to Combat Antimicrobial Resistance, p. 390. , Bulletin of the World Health Organization | |
dc.description | World Health Organization World Health Day Antimicrobial Resistance Technical Working Group: Geneva - 392 | |
dc.description | Roberts, R.R., Hota, B., Ahmad, I., Scott, R.D., Foster, S.D., Abbasi, F., Schabowski, S., Weinstein, R.A., Hospital and Societal Costs of Antimicrobial-Resistant Infections in a Chicago Teaching Hospital: Implications for Antibiotic Stewardship (2009) Clin. Infect. Dis., 49, pp. 1175-1184 | |
dc.description | Neidell, M.J., Cohen, B., Furuya, Y., Hill, J., Jeon, C.Y., Glied, S., Larson, E.L., Costs of Healthcare- and Community-Associated Infections with Antimicrobial-Resistant Versus Antimicrobial-Susceptible Organisms (2012) Clin. Infect. Dis., 55, pp. 807-815 | |
dc.description | Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Woodford, N., Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study (2010) Lancet Infect. Dis., 10, pp. 597-602 | |
dc.description | Bertholet, S., Ireton, G.C., Ordway, D.J., Windish, H.P., Pine, S.O., Kahn, M., Phan, T., Reed, S.G., A Defined Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug-Resistant Mycobacterium tuberculosis (2010) Sci. Transl. Med., 2, pp. 53-74 | |
dc.description | Hernandez, V., Crépin, T., Palencia, A., Cusack, S., Akama, T., Baker, S.J., Bu, W., Plattner, J.J., Discovery of a Novel Class of Boron-Based Antibacterials with Activity against Gram-Negative Bacteria (2013) Antimicrob. Agents Chem., 57, pp. 1394-1403 | |
dc.description | Fischbach, M.A., Walsh, C.T., Antibiotics for Emerging Pathogens (2009) Science, 325, pp. 1089-1093 | |
dc.description | Mitchell, G.J., Wiesenfeld, K., Nelson, D.C., Weitz, J.S., Critical cell wall hole size for lysis in Gram-positive bacteria (2013) J. R. Soc., Interface, 10, p. 20120892 | |
dc.description | Neu, H.C., The Crisis in Antibiotic Resistance (1992) Science, 257, pp. 1064-1073 | |
dc.description | Cai, X., Zhang, J., Ouyang, Y., Ma, D., Tan, S., Peng, Y., Bacteria-Adsorbed Palygorskite Stabilizes the Quaternary Phosphonium Salt with Specific-Targeting Capability, Long-Term Antibacterial Activity, and Lower Cytotoxicity (2013) Langmuir, 29, pp. 5279-5285 | |
dc.description | Hu, R., Li, G., Jiang, Y., Zhang, Y., Zou, J.-J., Wang, L., Zhang, X., Silver-Zwitterion Organic-Inorganic Nanocomposite with Antimicrobial and Antiadhesive Capabilities (2013) Langmuir, 29, pp. 3773-3779 | |
dc.description | Furuya, E.Y., Lowy, F.D., Antimicrobial-resistant bacteria in the community setting (2006) Nature Reviews Microbiology, 4 (1), pp. 36-45. , DOI 10.1038/nrmicro1325, PII N1325 | |
dc.description | Cohen, M.L., Wong, E.S., Falkow, S., Common R-plasmids in Staphylococcus aureus and Staphylococcus epidermidis during a nosocomial Staphylococcus aureus outbreak (1982) Antimicrobial Agents and Chemotherapy, 21 (2), pp. 210-215 | |
dc.description | Björk, E.M., Söderlind, F., Odén, M., Tuning the Shape of Mesoporous Silica Particles by Alterations in Parameter Space: From Rods to Platelets (2013) Langmuir, 29, pp. 13551-13561 | |
dc.description | Kataoka, S., Takeuchi, Y., Kawai, A., Yamada, M., Kamimura, Y., Endo, A., Controlled Formation of Silica Structures Using Siloxane/Block Copolymer Complexes Prepared in Various Solvent Mixtures (2013) Langmuir, 29, pp. 13562-13567 | |
dc.description | Irvine, D.J., Drug delivery: One nanoparticle, one kill (2011) Nat. Mater., 10, pp. 342-343 | |
dc.description | Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R., Nanocarriers as an emerging platform for cancer therapy (2007) Nature Nanotechnology, 2 (12), pp. 751-760. , DOI 10.1038/nnano.2007.387, PII NNANO2007387 | |
dc.description | Mamaeva, V., Rosenholm, J.M., Bate-Eya, L.T., Bergman, L., Peuhu, E., Duchanoy, A., Fortelius, L.E., Sahlgren, C., Mesoporous Silica Nanoparticles as Drug Delivery Systems for Targeted Inhibition of Notch Signaling in Cancer (2011) Mol. Ther., 19, pp. 1538-1546 | |
dc.description | Lin, Y.-S., Tsai, C.-P., Huang, H.-Y., Kuo, C.-T., Hung, Y., Huang, D.-M., Chen, Y.-C., Mou, C.-Y., Well-ordered mesoporous silica nanoparticles as cell markers (2005) Chemistry of Materials, 17 (18), pp. 4570-4573. , DOI 10.1021/cm051014c | |
dc.description | Lee, S.B., Kim, H.L., Jeong, H.-J., Lim, S.T., Sohn, M.-H., Kim, D.W., Mesoporous Silica Nanoparticle Pretargeting for PET Imaging Based on a Rapid Bioorthogonal Reaction in a Living Body (2013) Angew. Chem., Int. Ed., 52, pp. 1-5 | |
dc.description | Xue, M., Findenegg, G.H., Lysozyme as a pH-Responsive Valve for the Controlled Release of Guest Molecules from Mesoporous Silica (2012) Langmuir, 28, pp. 17578-17584 | |
dc.description | Park, H.S., Kim, C.W., Lee, H.J., Choi, J.H., Lee, S.G., Yun, Y.-P., Kwon, I.C., Lee, S.C., A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery (2010) Nanotechnology, 21, p. 225101 | |
dc.description | Maham, A., Tang, Z., Wu, H., Wang, J., Lin, Y., Protein-Based Nanomedicine Platforms for Drug Delivery (2009) Small, 5, pp. 1706-1721 | |
dc.description | Kim, M.-H., Na, H.-K., Kim, Y.-K., Ryoo, S.-R., Cho, H.S., Lee, K.E., Jeon, H., Min, D.-H., Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery (2011) ACS Nano, 5, pp. 3568-3576 | |
dc.description | De, M., Ghosh, P.S., Rotello, V.M., Applications of Nanoparticles in Biology (2008) Adv. Mater., 20, pp. 4225-4241 | |
dc.description | Torney, F., Trewyn, B.G., Lin, V.S.-Y., Wang, K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants (2007) Nature Nanotechnology, 2 (5), pp. 295-300. , DOI 10.1038/nnano.2007.108, PII NNANO2007108 | |
dc.description | Ambrogio, M.W., Frasconi, M., Yilmaz, M.D., Chen, X., New Methods for Improved Characterization of Silica Nanoparticle-Based Drug Delivery Systems (2013) Langmuir, 29, pp. 15386-15393 | |
dc.description | Suteewong, T., Sai, H., Hovden, R., Muller, D., Bradbury, M.S., Gruner, S.M., Wiesner, U., Multicompartment Mesoporous Silica Nanoparticles with Branched Shapes: An Epitaxial Growth Mechanism (2013) Science, 340, pp. 337-341 | |
dc.description | Tang, F., Li, L., Chen, D., Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery (2012) Adv. Mater., 24, pp. 1504-1534 | |
dc.description | Vivero-Escoto, J.L., Slowing, I.I., Trewyn, B.G., Lin, V.S.Y., Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery (2010) Small, 6, pp. 1952-1967 | |
dc.description | Vallet-Regi, M., Balas, F., Arcos, D., Mesoporous materials for drug delivery (2007) Angewandte Chemie - International Edition, 46 (40), pp. 7548-7558. , DOI 10.1002/anie.200604488 | |
dc.description | Botequim, D., Maia, J., Lino, M.M.F., Lopes, L.M.F., Simões, P.N., Ilharco, L.M., Ferreira, L., Nanoparticles and Surfaces Presenting Antifungal, Antibacterial and Antiviral Properties (2012) Langmuir, 28, pp. 7646-7656 | |
dc.description | Brinker, C.J., Scherer, G.W., (1990) Sol-gel Science - The Physics and Chemistry of Sol-gel Processing, , Academic Press Inc. San Diego | |
dc.description | Dal Lago, V., De Oliveira, L.F., Goncalves, K.D., Kobarg, J., Cardoso, M.B., Size-selective silver nanoparticles: Future of biomedical devices with enhanced bactericidal properties (2011) J. Mater. Chem., 21, pp. 12267-12273 | |
dc.description | De Souza Silva, E.J.M., Pastorello, M., Kobarg, J., Cardoso, M.B., Mazali, I.O., Selective Synthesis of Silver Nanoparticles onto Potassium Hexaniobate: Structural Organisation with Bactericidal Properties (2013) ChemPhysChem, 14, pp. 4075-4083 | |
dc.description | Raghupathi, K.R., Koodali, R.T., Manna, A.C., Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles (2011) Langmuir, 27, pp. 4020-4028 | |
dc.description | Griffin, M.O., Ceballos, G., Villarreal, F.J., Tetracycline compounds with non-antimicrobial organ protective properties: Possible mechanisms of action (2011) Pharmacol. Res., 63, pp. 102-107 | |
dc.description | Saenger, W., Orth, P., Kisker, C., Hillen, W., Hinrichs, W., The Tetracycline Repressor-A Paradigm for a Biological Switch (2000) Angew. Chem., Int. Ed., 39, pp. 2042-2052 | |
dc.description | Chopra, I., Roberts, M., Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance (2001) Microbiol. Mol. Biol. Rev., 65, p. 232 | |
dc.description | Jiang, X.B., Shi, L., Distribution of tetracycline and trimethoprim/sulfamethoxazole resistance genes in aerobic bacteria isolated from cooked meat products in Guangzhou, China (2013) Food Control, 30, pp. 30-34 | |
dc.description | Walczak, J.J., Bardy, S.L., Feriancikova, L., Xu, S., Comparison of the Transport of Tetracycline-Resistant and Tetracycline-Susceptible Escherichia coli Isolated from Lake Michigan (2011) Water, Air, Soil Pollut., 222, pp. 305-314 | |
dc.description | McKenna, M., Antibiotic resistance: The last resort (2013) Nature, 499, pp. 394-396 | |
dc.description | Moonan, P.K., Teeter, L.D., Salcedo, K., Ghosh, S., Ahuja, S.D., Flood, J., Graviss, E.A., Transmission of multidrug-resistant tuberculosis in the USA: A cross-sectional study (2013) Lancet Infect. Dis., 13, pp. 777-784 | |
dc.description | De Oliveira, L.F., Goncalves, D.K.A., Boreli, F.H., Kobarg, J., Cardoso, M.B., Mechanism of interaction between colloids and bacteria as evidenced by tailored silica-lysozyme composites (2012) J. Mater. Chem., 22, pp. 22851-22858 | |
dc.description | Errington, J., Hultgren, S.J., Caparon, M., (2007) Cells, , Lewin, B. Cassimeris, L. Lingappa, V. R. Plopper, G. Jones and Bartlett Publishers: Sudbury, MA | |
dc.description | Lin, Y.-S., Haynes, C.L., Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity (2010) J. Am. Chem. Soc., 132, pp. 4834-4842 | |
dc.description | Nel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Thompson, M., Understanding biophysicochemical interactions at the nano-bio interface (2009) Nat. Mater., 8, pp. 543-557 | |
dc.description | Slowing, I.I., Wu, C.-W., Vivero-Escoto, J.L., Lin, V.S.Y., Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells (2009) Small, 5, pp. 57-62 | |
dc.description | Chun, A.L., Silica nanoparticles: Keep the red stuff in (2008) Nat. Nanotechnol., , 10.1038/nnano.2008.402 | |
dc.description | Mager, M.D., Lapointe, V., Stevens, M.M., Exploring and exploiting chemistry at the cell surface (2011) Nat. Chem., 3, pp. 582-589 | |
dc.description | Frohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles (2012) Int. J. Nanomed., 7, pp. 5577-5591 | |
dc.description | Leirose, G.D.S., Cardoso, M.B., Silica-Maltose Composites: Obtaining Drug Carrier Systems Through Tailored Ultrastructural Nanoparticles (2011) J. Pharm. Sci., 100, pp. 2826-2834 | |
dc.description | De Oliveira, J.F.A., Cardoso, M.B., Partial Aggregation of Silver Nanoparticles Induced by Capping and Reducing Agents Competition (2014) Langmuir, 30, pp. 4879-4886 | |
dc.description | Dreiss, C.A., Jack, K.S., Parker, A.P., On the absolute calibration of bench-top small-angle X-ray scattering instruments: A comparison of different standard methods (2006) J. Appl. Crystallogr., 39, pp. 32-38 | |
dc.language | en | |
dc.publisher | American Chemical Society | |
dc.relation | Langmuir | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Tailored Silica-antibiotic Nanoparticles: Overcoming Bacterial Resistance With Low Cytotoxicity | |
dc.type | Artículos de revistas | |