dc.creatorCapeletti L.B.
dc.creatorDe Oliveira L.F.
dc.creatorGoncalves K.D.A.
dc.creatorDe Oliveira J.F.A.
dc.creatorSaito A.
dc.creatorKobarg J.
dc.creatorSantos J.H.Z.D.
dc.creatorCardoso M.B.
dc.date2014
dc.date2015-06-25T18:05:56Z
dc.date2015-11-26T15:06:53Z
dc.date2015-06-25T18:05:56Z
dc.date2015-11-26T15:06:53Z
dc.date.accessioned2018-03-28T22:17:17Z
dc.date.available2018-03-28T22:17:17Z
dc.identifier
dc.identifierLangmuir. American Chemical Society, v. 30, n. 25, p. 7456 - 7464, 2014.
dc.identifier7437463
dc.identifier10.1021/la4046435
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84903693977&partnerID=40&md5=e7402c0de715eafc756b9dd71fa9a056
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88191
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88191
dc.identifier2-s2.0-84903693977
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257328
dc.descriptionNew and more aggressive antibiotic resistant bacteria arise at an alarming rate and represent an ever-growing challenge to global health care systems. Consequently, the development of new antimicrobial agents is required to overcome the inefficiency of conventional antibiotics and bypass treatment limitations related to these pathologies. In this study, we present a synthesis protocol, which was able to entrap tetracycline antibiotic into silica nanospheres. Bactericidal efficacy of these structures was tested against bacteria that were susceptible and resistant to antibiotics. For nonresistant bacteria, our composite had bactericidal efficiency comparable to that of free-tetracycline. On the other hand, the synthesized composites were able to avoid bacterial growth of resistant bacteria while free-tetracycline has shown no significant bactericidal effect. Finally, we have investigated the cytotoxicity of these nanoparticles against mammalian cells to check any possible poisoning effect. It was found that these nanospheres are not apoptosis-inducers and only a reduction on the cell replication rate was seen when compared to the control without nanoparticles. © 2014 American Chemical Society.
dc.description30
dc.description25
dc.description7456
dc.description7464
dc.descriptionAndersson, D.I., Hughes, D., Antibiotic resistance and its cost: Is it possible to reverse resistance? (2010) Nat. Rev. Microbiol., 8, pp. 260-271
dc.descriptionKaufmann, B.B., Hung, D.T., The Fast Track to Multidrug Resistance (2010) Mol. Cell, 37, pp. 297-298
dc.descriptionLevy, S.B., Marshall, B., Antibacterial resistance worldwide: Causes, challenges and responses (2004) Nat. Med., 10, pp. 122-S129
dc.descriptionLevy, S.B., Obrien, T.F., Global Antimicrobial Resistance Alerts and Implications (2005) Clin. Infect. Dis., 41, p. 219. , Alliance for the Prudent Use of Antibiotics - S220
dc.description(2012) Antimicrobial Resistance, Fact Sheet, 194. , World Health Organization. World Health Organization: Geneva
dc.description(2009) Technical Report: The Bacterial Challenge: Time to React, , ECDC-EMEA. European Centre for Disease Prevention and Control: Stockholm
dc.descriptionLeung, E., Weil, D.E., Raviglione, M., Nakatani, H., (2011) The WHO Policy Package to Combat Antimicrobial Resistance, p. 390. , Bulletin of the World Health Organization
dc.descriptionWorld Health Organization World Health Day Antimicrobial Resistance Technical Working Group: Geneva - 392
dc.descriptionRoberts, R.R., Hota, B., Ahmad, I., Scott, R.D., Foster, S.D., Abbasi, F., Schabowski, S., Weinstein, R.A., Hospital and Societal Costs of Antimicrobial-Resistant Infections in a Chicago Teaching Hospital: Implications for Antibiotic Stewardship (2009) Clin. Infect. Dis., 49, pp. 1175-1184
dc.descriptionNeidell, M.J., Cohen, B., Furuya, Y., Hill, J., Jeon, C.Y., Glied, S., Larson, E.L., Costs of Healthcare- and Community-Associated Infections with Antimicrobial-Resistant Versus Antimicrobial-Susceptible Organisms (2012) Clin. Infect. Dis., 55, pp. 807-815
dc.descriptionKumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Woodford, N., Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study (2010) Lancet Infect. Dis., 10, pp. 597-602
dc.descriptionBertholet, S., Ireton, G.C., Ordway, D.J., Windish, H.P., Pine, S.O., Kahn, M., Phan, T., Reed, S.G., A Defined Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug-Resistant Mycobacterium tuberculosis (2010) Sci. Transl. Med., 2, pp. 53-74
dc.descriptionHernandez, V., Crépin, T., Palencia, A., Cusack, S., Akama, T., Baker, S.J., Bu, W., Plattner, J.J., Discovery of a Novel Class of Boron-Based Antibacterials with Activity against Gram-Negative Bacteria (2013) Antimicrob. Agents Chem., 57, pp. 1394-1403
dc.descriptionFischbach, M.A., Walsh, C.T., Antibiotics for Emerging Pathogens (2009) Science, 325, pp. 1089-1093
dc.descriptionMitchell, G.J., Wiesenfeld, K., Nelson, D.C., Weitz, J.S., Critical cell wall hole size for lysis in Gram-positive bacteria (2013) J. R. Soc., Interface, 10, p. 20120892
dc.descriptionNeu, H.C., The Crisis in Antibiotic Resistance (1992) Science, 257, pp. 1064-1073
dc.descriptionCai, X., Zhang, J., Ouyang, Y., Ma, D., Tan, S., Peng, Y., Bacteria-Adsorbed Palygorskite Stabilizes the Quaternary Phosphonium Salt with Specific-Targeting Capability, Long-Term Antibacterial Activity, and Lower Cytotoxicity (2013) Langmuir, 29, pp. 5279-5285
dc.descriptionHu, R., Li, G., Jiang, Y., Zhang, Y., Zou, J.-J., Wang, L., Zhang, X., Silver-Zwitterion Organic-Inorganic Nanocomposite with Antimicrobial and Antiadhesive Capabilities (2013) Langmuir, 29, pp. 3773-3779
dc.descriptionFuruya, E.Y., Lowy, F.D., Antimicrobial-resistant bacteria in the community setting (2006) Nature Reviews Microbiology, 4 (1), pp. 36-45. , DOI 10.1038/nrmicro1325, PII N1325
dc.descriptionCohen, M.L., Wong, E.S., Falkow, S., Common R-plasmids in Staphylococcus aureus and Staphylococcus epidermidis during a nosocomial Staphylococcus aureus outbreak (1982) Antimicrobial Agents and Chemotherapy, 21 (2), pp. 210-215
dc.descriptionBjörk, E.M., Söderlind, F., Odén, M., Tuning the Shape of Mesoporous Silica Particles by Alterations in Parameter Space: From Rods to Platelets (2013) Langmuir, 29, pp. 13551-13561
dc.descriptionKataoka, S., Takeuchi, Y., Kawai, A., Yamada, M., Kamimura, Y., Endo, A., Controlled Formation of Silica Structures Using Siloxane/Block Copolymer Complexes Prepared in Various Solvent Mixtures (2013) Langmuir, 29, pp. 13562-13567
dc.descriptionIrvine, D.J., Drug delivery: One nanoparticle, one kill (2011) Nat. Mater., 10, pp. 342-343
dc.descriptionPeer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R., Nanocarriers as an emerging platform for cancer therapy (2007) Nature Nanotechnology, 2 (12), pp. 751-760. , DOI 10.1038/nnano.2007.387, PII NNANO2007387
dc.descriptionMamaeva, V., Rosenholm, J.M., Bate-Eya, L.T., Bergman, L., Peuhu, E., Duchanoy, A., Fortelius, L.E., Sahlgren, C., Mesoporous Silica Nanoparticles as Drug Delivery Systems for Targeted Inhibition of Notch Signaling in Cancer (2011) Mol. Ther., 19, pp. 1538-1546
dc.descriptionLin, Y.-S., Tsai, C.-P., Huang, H.-Y., Kuo, C.-T., Hung, Y., Huang, D.-M., Chen, Y.-C., Mou, C.-Y., Well-ordered mesoporous silica nanoparticles as cell markers (2005) Chemistry of Materials, 17 (18), pp. 4570-4573. , DOI 10.1021/cm051014c
dc.descriptionLee, S.B., Kim, H.L., Jeong, H.-J., Lim, S.T., Sohn, M.-H., Kim, D.W., Mesoporous Silica Nanoparticle Pretargeting for PET Imaging Based on a Rapid Bioorthogonal Reaction in a Living Body (2013) Angew. Chem., Int. Ed., 52, pp. 1-5
dc.descriptionXue, M., Findenegg, G.H., Lysozyme as a pH-Responsive Valve for the Controlled Release of Guest Molecules from Mesoporous Silica (2012) Langmuir, 28, pp. 17578-17584
dc.descriptionPark, H.S., Kim, C.W., Lee, H.J., Choi, J.H., Lee, S.G., Yun, Y.-P., Kwon, I.C., Lee, S.C., A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery (2010) Nanotechnology, 21, p. 225101
dc.descriptionMaham, A., Tang, Z., Wu, H., Wang, J., Lin, Y., Protein-Based Nanomedicine Platforms for Drug Delivery (2009) Small, 5, pp. 1706-1721
dc.descriptionKim, M.-H., Na, H.-K., Kim, Y.-K., Ryoo, S.-R., Cho, H.S., Lee, K.E., Jeon, H., Min, D.-H., Facile Synthesis of Monodispersed Mesoporous Silica Nanoparticles with Ultralarge Pores and Their Application in Gene Delivery (2011) ACS Nano, 5, pp. 3568-3576
dc.descriptionDe, M., Ghosh, P.S., Rotello, V.M., Applications of Nanoparticles in Biology (2008) Adv. Mater., 20, pp. 4225-4241
dc.descriptionTorney, F., Trewyn, B.G., Lin, V.S.-Y., Wang, K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants (2007) Nature Nanotechnology, 2 (5), pp. 295-300. , DOI 10.1038/nnano.2007.108, PII NNANO2007108
dc.descriptionAmbrogio, M.W., Frasconi, M., Yilmaz, M.D., Chen, X., New Methods for Improved Characterization of Silica Nanoparticle-Based Drug Delivery Systems (2013) Langmuir, 29, pp. 15386-15393
dc.descriptionSuteewong, T., Sai, H., Hovden, R., Muller, D., Bradbury, M.S., Gruner, S.M., Wiesner, U., Multicompartment Mesoporous Silica Nanoparticles with Branched Shapes: An Epitaxial Growth Mechanism (2013) Science, 340, pp. 337-341
dc.descriptionTang, F., Li, L., Chen, D., Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery (2012) Adv. Mater., 24, pp. 1504-1534
dc.descriptionVivero-Escoto, J.L., Slowing, I.I., Trewyn, B.G., Lin, V.S.Y., Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery (2010) Small, 6, pp. 1952-1967
dc.descriptionVallet-Regi, M., Balas, F., Arcos, D., Mesoporous materials for drug delivery (2007) Angewandte Chemie - International Edition, 46 (40), pp. 7548-7558. , DOI 10.1002/anie.200604488
dc.descriptionBotequim, D., Maia, J., Lino, M.M.F., Lopes, L.M.F., Simões, P.N., Ilharco, L.M., Ferreira, L., Nanoparticles and Surfaces Presenting Antifungal, Antibacterial and Antiviral Properties (2012) Langmuir, 28, pp. 7646-7656
dc.descriptionBrinker, C.J., Scherer, G.W., (1990) Sol-gel Science - The Physics and Chemistry of Sol-gel Processing, , Academic Press Inc. San Diego
dc.descriptionDal Lago, V., De Oliveira, L.F., Goncalves, K.D., Kobarg, J., Cardoso, M.B., Size-selective silver nanoparticles: Future of biomedical devices with enhanced bactericidal properties (2011) J. Mater. Chem., 21, pp. 12267-12273
dc.descriptionDe Souza Silva, E.J.M., Pastorello, M., Kobarg, J., Cardoso, M.B., Mazali, I.O., Selective Synthesis of Silver Nanoparticles onto Potassium Hexaniobate: Structural Organisation with Bactericidal Properties (2013) ChemPhysChem, 14, pp. 4075-4083
dc.descriptionRaghupathi, K.R., Koodali, R.T., Manna, A.C., Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles (2011) Langmuir, 27, pp. 4020-4028
dc.descriptionGriffin, M.O., Ceballos, G., Villarreal, F.J., Tetracycline compounds with non-antimicrobial organ protective properties: Possible mechanisms of action (2011) Pharmacol. Res., 63, pp. 102-107
dc.descriptionSaenger, W., Orth, P., Kisker, C., Hillen, W., Hinrichs, W., The Tetracycline Repressor-A Paradigm for a Biological Switch (2000) Angew. Chem., Int. Ed., 39, pp. 2042-2052
dc.descriptionChopra, I., Roberts, M., Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance (2001) Microbiol. Mol. Biol. Rev., 65, p. 232
dc.descriptionJiang, X.B., Shi, L., Distribution of tetracycline and trimethoprim/sulfamethoxazole resistance genes in aerobic bacteria isolated from cooked meat products in Guangzhou, China (2013) Food Control, 30, pp. 30-34
dc.descriptionWalczak, J.J., Bardy, S.L., Feriancikova, L., Xu, S., Comparison of the Transport of Tetracycline-Resistant and Tetracycline-Susceptible Escherichia coli Isolated from Lake Michigan (2011) Water, Air, Soil Pollut., 222, pp. 305-314
dc.descriptionMcKenna, M., Antibiotic resistance: The last resort (2013) Nature, 499, pp. 394-396
dc.descriptionMoonan, P.K., Teeter, L.D., Salcedo, K., Ghosh, S., Ahuja, S.D., Flood, J., Graviss, E.A., Transmission of multidrug-resistant tuberculosis in the USA: A cross-sectional study (2013) Lancet Infect. Dis., 13, pp. 777-784
dc.descriptionDe Oliveira, L.F., Goncalves, D.K.A., Boreli, F.H., Kobarg, J., Cardoso, M.B., Mechanism of interaction between colloids and bacteria as evidenced by tailored silica-lysozyme composites (2012) J. Mater. Chem., 22, pp. 22851-22858
dc.descriptionErrington, J., Hultgren, S.J., Caparon, M., (2007) Cells, , Lewin, B. Cassimeris, L. Lingappa, V. R. Plopper, G. Jones and Bartlett Publishers: Sudbury, MA
dc.descriptionLin, Y.-S., Haynes, C.L., Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity (2010) J. Am. Chem. Soc., 132, pp. 4834-4842
dc.descriptionNel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Thompson, M., Understanding biophysicochemical interactions at the nano-bio interface (2009) Nat. Mater., 8, pp. 543-557
dc.descriptionSlowing, I.I., Wu, C.-W., Vivero-Escoto, J.L., Lin, V.S.Y., Mesoporous Silica Nanoparticles for Reducing Hemolytic Activity Towards Mammalian Red Blood Cells (2009) Small, 5, pp. 57-62
dc.descriptionChun, A.L., Silica nanoparticles: Keep the red stuff in (2008) Nat. Nanotechnol., , 10.1038/nnano.2008.402
dc.descriptionMager, M.D., Lapointe, V., Stevens, M.M., Exploring and exploiting chemistry at the cell surface (2011) Nat. Chem., 3, pp. 582-589
dc.descriptionFrohlich, E., The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles (2012) Int. J. Nanomed., 7, pp. 5577-5591
dc.descriptionLeirose, G.D.S., Cardoso, M.B., Silica-Maltose Composites: Obtaining Drug Carrier Systems Through Tailored Ultrastructural Nanoparticles (2011) J. Pharm. Sci., 100, pp. 2826-2834
dc.descriptionDe Oliveira, J.F.A., Cardoso, M.B., Partial Aggregation of Silver Nanoparticles Induced by Capping and Reducing Agents Competition (2014) Langmuir, 30, pp. 4879-4886
dc.descriptionDreiss, C.A., Jack, K.S., Parker, A.P., On the absolute calibration of bench-top small-angle X-ray scattering instruments: A comparison of different standard methods (2006) J. Appl. Crystallogr., 39, pp. 32-38
dc.languageen
dc.publisherAmerican Chemical Society
dc.relationLangmuir
dc.rightsfechado
dc.sourceScopus
dc.titleTailored Silica-antibiotic Nanoparticles: Overcoming Bacterial Resistance With Low Cytotoxicity
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución