Actas de congresos
Comparison Of Several Glycerol Reforming Methods For Hydrogen And Syngas Production Using Gibbs Energy Minimization
Registro en:
International Journal Of Hydrogen Energy. Elsevier Ltd, v. 39, n. 31, p. 17969 - 17984, 2014.
3603199
10.1016/j.ijhydene.2014.03.130
2-s2.0-84914148937
Autor
Freitas A.C.D.
Guirardello R.
Institución
Resumen
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) This paper focuses on the comparison of different glycerol reforming technologies aimed to hydrogen and syngas production. The reactions of steam reforming, partial oxidation, autothermal reforming, dry reforming and supercritical water gasification were analyzed. For this, the Gibbs energy minimization approach was used in combination with the virial equation of state. The validation of the model was made between the simulations of the proposed model and both, simulated and experimental data obtained in the literature. The effects of modifications in the operational temperature, operational pressure and reactants composition were analyzed with regard to composition of the products. The effect of coke formation was discussed too. Generally, higher temperatures and lower pressures resulted in higher hydrogen and syngas production. All reforming technologies demonstrated to be feasible for use in hydrogen or synthesis gas production in respect of the products composition. The proposed model showed good predictive ability and low computational time (close to 1 s) to perform the calculation of the combined chemical and phase equilibrium for all systems analyzed. 39 31 17969 17984 CAPES; São Paulo Research Foundation; 2011/20666-8; FAPESP; São Paulo Research Foundation Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Saxena, R.C., Seal, D., Kumar, S., Goyal, H.B., Thermo-chemical routes for hydrogen rich gas from biomass: A review (2008) Renew Sustain Energy Rev, 12, pp. 1909-1927 Ma, F., Hanna, M.A., Biodiesel production: A review (1999) Bioresour Technol, 70, pp. 1-15 Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C., From glycerol to value added products (2007) Angew Chem Int Ed, 46, pp. 4434-4440 Vaidya, P.D., Rodrigues, A.E., Glycerol reforming for hydrogen production: A review (2009) Chem Eng Technol, 32, pp. 1463-1469 Zhang, B., Tang, X., Li, Y., Xu, Y., Shen, W., Hydrogen production from steam reforming of ethanol and glycerol over ceria supported metal catalysts (2007) Int J Hydrogen Energy, 32, pp. 2367-2373 Buffoni, I.N., Pompeo, F., Santori, G.F., Nichio, N.N., Nickel catalysts applied in steam reforming of glycerol for hydrogen production (2009) Catal Commun, 10, pp. 1656-1660 Adhikari, S., Fernando, S.D., Haryanto, A., Hydrogen production from glicerin by steam reforming over nickel catalysts (2008) Renew Energy, 33, pp. 1097-1100 Thyssen, V.V., Maia, T.A., Assaf, E.M., Ni supported on La2O3-SiO2 used to catalyze glycerol steam reforming (2013) Fuel, 105, pp. 358-363 Iriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Guemez, M.B., Sanchez, M.C., Glycerol steam reforming over Ni catalysts supported on ceria and ceria promoted alumina (2010) Int J Hydrogen Energy, 35, pp. 11622-11633 Pompeo, F., Santori, G.F., Nichio, N.N., Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts (2011) Catal Today, 172, pp. 183-188 Pompeo, F., Santori, G.F., Nichio, N.N., Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts (2010) Int J Hydrogen Energy, 35, pp. 8912-8920 Wang, H., Wang, X., Li, M., Li, S., Wang, S., Ma, X., Thermodynamic analysis of hydrogen production from glycerol autothermal reforming (2009) Int J Hydrogen Energy, 34, pp. 5683-5690 Wang, W., Thermodynamic analysis of glycerol partial oxidation for hydrogen production (2010) Fuel Process Technol, 91, pp. 1401-1408 Yang, G., Yu, H., Peng, F., Wang, H., Yang, J., Xie, D., Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol (2011) Renew Energy, 36, pp. 2120-2127 Byrd, A.J., Pant, K.K., Gupta, R.B., Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst (2008) Fuel, 87, pp. 2956-2960 Chakinala, A.G., Brilman, D.W.F., Van Swaaij, W.P.M., Kersten, S.R.A., Catalytic and non catalytic supercritical water gasification of microalgae and glycerol (2009) Indust Eng Chem Res, 49, pp. 1113-1122 Guo, S., Guo, L., Cao, C., Yin, J., Lu, Y., Zhang, X., Hydrogen production from glycerol by supercritical water gasification in a continuos flow tubular reactor (2012) Int J Hydrogen Energy, 37, pp. 5559-5568 Van Bennekon, J.G., Venderbosch, R.H., Assink, D., Heeres, H.J., Reforming of methanol and glycerol in supercritical water (2011) J Supercrit Fluids, 58, pp. 99-113 Voll, F.A.P., Rossi, C.C.R.S., Silva, C., Guirardello, R., Souza, R.O.M.A., Cabral, V.F., Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose (2009) Int J Hydrogen Energy, 34, pp. 9737-9744 Wang, X., Li, M., Wang, M., Wang, H., Li, S., Wang, S., Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production (2009) Fuel, 88, pp. 2148-2153 Fernández, Y., Arennilas, A., Bermúdez, J.M., Menéndez, J.A., Comparative study of conventional and microwave assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst (2010) J Anal Appl Pyrolysis, 88, pp. 155-159 Kale, G.R., Kulkarni, B.D., Thermodynamic analysis of dry autothermal reforming of glycerol (2010) Fuel Process Technol, 91, pp. 520-530 Valliyappan, T., Bakhshi, N.N., Dalai, A.K., Pyrolysis of glycerol for the production of hydrogen or syngas (2008) Bioresour Technol, 99, pp. 4476-4483 Adhikari, S., Fernando, S., Gwaltney, S.R., Filip To, S.D., Bricka, R.M., Steele, P.H., A thermodynamic analysis of hydrogen production by steam reforming of glycerol (2007) Int J Hydrogen Energy, 32, pp. 2875-2880 Holladay, J.D., Hu, J., King, D.L., Wang, Y., An overview of hydrogen productions technologies (2009) Catal Today, 139, pp. 244-260 Rass-Hansen, J., Johansson, R., Moller, M., Christensen, C.H., Steam reforming of technical bioethanol for hydrogen production (2008) Int J Hydrogen Energy, 33, pp. 4547-4554 Adhikari, S., Fernando, S., Haryanto, A., Production of hydrogen by steam reforming of glicerin over alumina supported metal catalysts (2007) Catal Today, 129, pp. 355-364 Adhikari, S., Fernando, S., Haryanto, A., A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glicerin (2007) Energy Fuels, 21, pp. 2306-2310 Slinn, M., Kendall, K., Mallon, C., Andrews, J., Steam reforming of biodiesel by-product to make renewable hydrogen (2008) Bioresour Technol, 99, pp. 5851-5858 Oliveira, E.L.G., Grande, C.A., Rodrigues, A.R.E., Methane steam reforming in large pore catalyst (2010) Chem Eng Sci, 65, pp. 1539-1550 Sanchez, E.A., Comelli, R.L.A., Hydrogen by glycerol steam reforming on a nickel alumina catalyst: Deactivation processes and regeneration (2012) Int J Hydrogen Energy, 37, pp. 14740-14746 Dieuzeide, M.L., Iannibeli, V., Jobbagi, M., Amadeo, N., Steam reforming of glycerol over Ni/Mg/γ-Al2O3 catalysts. Effect of calcination temperatures (2012) Int J Hydrogen Energy, 37, pp. 14926-14930 Bobadilla, L.F., Álvarez, A., Domínguez, M.I., Romero-Sarria, F., Centeno, M.A., Montes, M., Influence of the shape of Ni catalyst in the glycerol steam reforming (2012) Appl Catal B - Environ, 123, pp. 379-390 Cheng, G.K., Foo, S.Y., Adesina, A.A., Steam reforming of glycerol over Ni/Al2O3 catalysts (2011) Catal Today, 178, pp. 25-33 Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in fixed bed reactor (2013) Chem Eng J, 220, pp. 133-142 Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Renewable hydrogen production from steam reforming of glycerol by Ni-Cu-Al, Ni-Cu-Mg, Ni-Mg catalysts (2013) Int J Hydrogen Energy, 38, pp. 3562-3571 Ahmed, S., Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells (2001) Int J Hydrogen Energy, 26, pp. 291-301 Carrettin, S., McMorn, P., Johnston, P., Griffin, K., Kiely, C.J., Hutchings, G.J., Oxidation of glycerol using supported Pt, Pd and Au catalysts (2003) Phys Chem Chem Phys, 5, pp. 1329-1336 Rennard, D.C., Kruger, J.S., Schmidt, L.D., Autothermal catalytic partial oxidation of glycerol to syngas and non-equilibrium products (2009) Chem Sus Chem, 2, pp. 89-98 Rabenstein, G., Hacker, V., Hydrogen for fuel cells from ethanol by steam reforming, partial oxidation and combined auto-thermal reforming: A thermodynamic analysis (2008) J Power Sources, 185, pp. 1293-1304 Qi, A., Wang, S., Fu, G., Wu, D., Autothermal reforming of n-octane on Ru-based catalysts (2005) Appl Catal A - Gen, 293, pp. 71-82 Dauenhauer, P.J., Salge, J.R., Schmidt, L.D., Renewable hydrogen by autothermal steam reforming of volatile carbohydrates (2006) J Catal, 244, pp. 238-247 Douette, A.M.D., Turn, S.Q., Wang, W., Keffer, V.I., Experimental investigation of hydrogen production from glycerin reforming (2007) Energy Fuels, 21, pp. 3499-3504 Edwards, J.H., Maitra, A.M., The chemistry of methane reforming with carbon dioxide and its current and potential applications (1995) Fuel Process Technol, 42, pp. 269-289 Mizuno, T., Goto, M., Kodama, A., Hirose, T., Supercritical water oxidation of a model municipal solid waste (2000) Indust Eng Chem Res, 39, pp. 2807-2810 Kruse, A., Supercritical water gasification (2008) Biofuels Bioprod Biorefining, 2, pp. 415-437 Savage, P.E., Heterogenous catalysis in supercritical water (2000) Catal Today, 62, pp. 167-173 Calzavara, Y., Joussot-Dubien, C., Boissonnet, G., Sarrade, S., Evaluation of biomass gasification in supercritical water process for hydrogen production (2005) Energy Convers Manag, 46, pp. 615-631 Guo, Y., Wang, S.Z., Xu, D.H., Gong, Y.M., Ma, H.H., Tang, X.Y., Review of catalytic supercritical water gasification for hydrogen production from biomass (2010) Renew Sustain Energy Rev, 14, pp. 334-343 Hao, X.H., Guo, L.J., Mao, X., Zhang, X.M., Chen, X.J., Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water (2003) Int J Hydrogen Energy, 28, pp. 55-64 Clifford, T., (1998) Fundamentals of Supercritical Fluids, , Oxford University Press New York May, A., Salvadó, J., Torras, C., Montané, D., Catalytic gasification of glycerol in supercritical water (2010) Chem Eng J, 160, pp. 751-759 Smith, W.R.M., Missen, R.W., (1982) Chemical Reaction Equilibrium Analysis: Theory and Algorithms, , JohnWiley & Sons Pitzer, K.S., Curl, R.F., The volumetric and thermodynamic properties of fluids III. Empirical equation of the second virial coefficient (1957) J Am Chem Soc, 20, pp. 263-272 Tsonopoulos, C., An empirical correlation of second virial coefficients (1974) AIChE J, 20, pp. 263-272 Castello, D., Fiori, L., Supercritical water gasification of biomass: Thermodynamic constraints (2011) Bioresour Technol, 102, pp. 7574-7582 Castillo, J., Grossmann, I.E., Computation of phase and chemical equilibria (1981) Comput Chem Eng, 5, pp. 99-108 Freitas, A.C.D., Guirardello, R., Oxidative reforming of methane for hydrogen and synthesis gas production: Thermodynamic equilibrium analysis (2012) J Nat Gas Chem, 21, pp. 571-580 Lu, Y., Guo, X., Zhang, X., Yan, Q., Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water (2007) Chem Eng J, 131, pp. 233-244 Nichita, D.V., Gomez, S., Luna, E., Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method (2002) Comput Chem Eng, 26, pp. 1703-1724 Rossi, C.C.R.S., Berezuk, M.E., Cardozo-Filho, L., Guirardello, R., Simultaneous calculation of chemical and phase equilibria using convexity analysis (2011) Comput Chem Eng, 35, pp. 1226-1237 Freitas, A.C.D., Guirardello, R., Supercritical water gasification of glucose and cellulose for hydrogen and syngas production (2012) Chem Eng Trans, 27, pp. 361-366 Castier, M., Solution of isochoric-isoenergetic flash problem by direct entropy maximization (2009) Fluid Phase Equilibria, 276, pp. 7-17 White, W.B., Johnson, S.M., Danzig, G.B., Chemical equilibrium in complex mixtures (1958) J Chem Phys, 28, pp. 751-755 Brooke, K., Meeraus, D., Raman, R., (1998) GAMS - A User's Manual Polling, B.P., Prausnitz, J.M., O'Connel, P.J., (2000) The Properties of Gases and Liquids, , 5th ed. McGraw Hill New York Reid, R.P., Prausnitz, J.M., Sherwood, T.K., (1987) The Properties of Gases and Liquids, , 4th ed. McGraw Hill New York Dippr, (2000) DIADWM Public V. 1.2. Design Institute for Physical Property Data. Information and Data Evaluation Manager Adhikari, S., Fernando, S.D., To, S.D.F., Bricka, R.M., Steele, P.H., Haryanto, A., Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts (2008) Energy Fuels, 22, pp. 1220-1226 Wang, X., Li, M., Li, S., Wang, H., Wang, S., Ma, X., Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent: A comparative study of thermodynamic and experimental work (2010) Fuel Process Technol, 91, pp. 1812-1818 Freitas, A.C.D., Guirardello, R., Thermodynamic analysis of supercritical water gasification of microalgae biomass for hydrogen and syngas production (2013) Chem Eng Trans, 32, pp. 553-558