dc.creatorFreitas A.C.D.
dc.creatorGuirardello R.
dc.date2014
dc.date2015-06-25T18:03:47Z
dc.date2015-11-26T15:06:06Z
dc.date2015-06-25T18:03:47Z
dc.date2015-11-26T15:06:06Z
dc.date.accessioned2018-03-28T22:16:37Z
dc.date.available2018-03-28T22:16:37Z
dc.identifier
dc.identifierInternational Journal Of Hydrogen Energy. Elsevier Ltd, v. 39, n. 31, p. 17969 - 17984, 2014.
dc.identifier3603199
dc.identifier10.1016/j.ijhydene.2014.03.130
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84914148937&partnerID=40&md5=5a60ce10e6b4da108f56df843721f7d8
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88067
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88067
dc.identifier2-s2.0-84914148937
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257174
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionThis paper focuses on the comparison of different glycerol reforming technologies aimed to hydrogen and syngas production. The reactions of steam reforming, partial oxidation, autothermal reforming, dry reforming and supercritical water gasification were analyzed. For this, the Gibbs energy minimization approach was used in combination with the virial equation of state. The validation of the model was made between the simulations of the proposed model and both, simulated and experimental data obtained in the literature. The effects of modifications in the operational temperature, operational pressure and reactants composition were analyzed with regard to composition of the products. The effect of coke formation was discussed too. Generally, higher temperatures and lower pressures resulted in higher hydrogen and syngas production. All reforming technologies demonstrated to be feasible for use in hydrogen or synthesis gas production in respect of the products composition. The proposed model showed good predictive ability and low computational time (close to 1 s) to perform the calculation of the combined chemical and phase equilibrium for all systems analyzed.
dc.description39
dc.description31
dc.description17969
dc.description17984
dc.descriptionCAPES; São Paulo Research Foundation; 2011/20666-8; FAPESP; São Paulo Research Foundation
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionSaxena, R.C., Seal, D., Kumar, S., Goyal, H.B., Thermo-chemical routes for hydrogen rich gas from biomass: A review (2008) Renew Sustain Energy Rev, 12, pp. 1909-1927
dc.descriptionMa, F., Hanna, M.A., Biodiesel production: A review (1999) Bioresour Technol, 70, pp. 1-15
dc.descriptionPagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C., From glycerol to value added products (2007) Angew Chem Int Ed, 46, pp. 4434-4440
dc.descriptionVaidya, P.D., Rodrigues, A.E., Glycerol reforming for hydrogen production: A review (2009) Chem Eng Technol, 32, pp. 1463-1469
dc.descriptionZhang, B., Tang, X., Li, Y., Xu, Y., Shen, W., Hydrogen production from steam reforming of ethanol and glycerol over ceria supported metal catalysts (2007) Int J Hydrogen Energy, 32, pp. 2367-2373
dc.descriptionBuffoni, I.N., Pompeo, F., Santori, G.F., Nichio, N.N., Nickel catalysts applied in steam reforming of glycerol for hydrogen production (2009) Catal Commun, 10, pp. 1656-1660
dc.descriptionAdhikari, S., Fernando, S.D., Haryanto, A., Hydrogen production from glicerin by steam reforming over nickel catalysts (2008) Renew Energy, 33, pp. 1097-1100
dc.descriptionThyssen, V.V., Maia, T.A., Assaf, E.M., Ni supported on La2O3-SiO2 used to catalyze glycerol steam reforming (2013) Fuel, 105, pp. 358-363
dc.descriptionIriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Guemez, M.B., Sanchez, M.C., Glycerol steam reforming over Ni catalysts supported on ceria and ceria promoted alumina (2010) Int J Hydrogen Energy, 35, pp. 11622-11633
dc.descriptionPompeo, F., Santori, G.F., Nichio, N.N., Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts (2011) Catal Today, 172, pp. 183-188
dc.descriptionPompeo, F., Santori, G.F., Nichio, N.N., Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts (2010) Int J Hydrogen Energy, 35, pp. 8912-8920
dc.descriptionWang, H., Wang, X., Li, M., Li, S., Wang, S., Ma, X., Thermodynamic analysis of hydrogen production from glycerol autothermal reforming (2009) Int J Hydrogen Energy, 34, pp. 5683-5690
dc.descriptionWang, W., Thermodynamic analysis of glycerol partial oxidation for hydrogen production (2010) Fuel Process Technol, 91, pp. 1401-1408
dc.descriptionYang, G., Yu, H., Peng, F., Wang, H., Yang, J., Xie, D., Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol (2011) Renew Energy, 36, pp. 2120-2127
dc.descriptionByrd, A.J., Pant, K.K., Gupta, R.B., Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst (2008) Fuel, 87, pp. 2956-2960
dc.descriptionChakinala, A.G., Brilman, D.W.F., Van Swaaij, W.P.M., Kersten, S.R.A., Catalytic and non catalytic supercritical water gasification of microalgae and glycerol (2009) Indust Eng Chem Res, 49, pp. 1113-1122
dc.descriptionGuo, S., Guo, L., Cao, C., Yin, J., Lu, Y., Zhang, X., Hydrogen production from glycerol by supercritical water gasification in a continuos flow tubular reactor (2012) Int J Hydrogen Energy, 37, pp. 5559-5568
dc.descriptionVan Bennekon, J.G., Venderbosch, R.H., Assink, D., Heeres, H.J., Reforming of methanol and glycerol in supercritical water (2011) J Supercrit Fluids, 58, pp. 99-113
dc.descriptionVoll, F.A.P., Rossi, C.C.R.S., Silva, C., Guirardello, R., Souza, R.O.M.A., Cabral, V.F., Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose (2009) Int J Hydrogen Energy, 34, pp. 9737-9744
dc.descriptionWang, X., Li, M., Wang, M., Wang, H., Li, S., Wang, S., Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production (2009) Fuel, 88, pp. 2148-2153
dc.descriptionFernández, Y., Arennilas, A., Bermúdez, J.M., Menéndez, J.A., Comparative study of conventional and microwave assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst (2010) J Anal Appl Pyrolysis, 88, pp. 155-159
dc.descriptionKale, G.R., Kulkarni, B.D., Thermodynamic analysis of dry autothermal reforming of glycerol (2010) Fuel Process Technol, 91, pp. 520-530
dc.descriptionValliyappan, T., Bakhshi, N.N., Dalai, A.K., Pyrolysis of glycerol for the production of hydrogen or syngas (2008) Bioresour Technol, 99, pp. 4476-4483
dc.descriptionAdhikari, S., Fernando, S., Gwaltney, S.R., Filip To, S.D., Bricka, R.M., Steele, P.H., A thermodynamic analysis of hydrogen production by steam reforming of glycerol (2007) Int J Hydrogen Energy, 32, pp. 2875-2880
dc.descriptionHolladay, J.D., Hu, J., King, D.L., Wang, Y., An overview of hydrogen productions technologies (2009) Catal Today, 139, pp. 244-260
dc.descriptionRass-Hansen, J., Johansson, R., Moller, M., Christensen, C.H., Steam reforming of technical bioethanol for hydrogen production (2008) Int J Hydrogen Energy, 33, pp. 4547-4554
dc.descriptionAdhikari, S., Fernando, S., Haryanto, A., Production of hydrogen by steam reforming of glicerin over alumina supported metal catalysts (2007) Catal Today, 129, pp. 355-364
dc.descriptionAdhikari, S., Fernando, S., Haryanto, A., A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glicerin (2007) Energy Fuels, 21, pp. 2306-2310
dc.descriptionSlinn, M., Kendall, K., Mallon, C., Andrews, J., Steam reforming of biodiesel by-product to make renewable hydrogen (2008) Bioresour Technol, 99, pp. 5851-5858
dc.descriptionOliveira, E.L.G., Grande, C.A., Rodrigues, A.R.E., Methane steam reforming in large pore catalyst (2010) Chem Eng Sci, 65, pp. 1539-1550
dc.descriptionSanchez, E.A., Comelli, R.L.A., Hydrogen by glycerol steam reforming on a nickel alumina catalyst: Deactivation processes and regeneration (2012) Int J Hydrogen Energy, 37, pp. 14740-14746
dc.descriptionDieuzeide, M.L., Iannibeli, V., Jobbagi, M., Amadeo, N., Steam reforming of glycerol over Ni/Mg/γ-Al2O3 catalysts. Effect of calcination temperatures (2012) Int J Hydrogen Energy, 37, pp. 14926-14930
dc.descriptionBobadilla, L.F., Álvarez, A., Domínguez, M.I., Romero-Sarria, F., Centeno, M.A., Montes, M., Influence of the shape of Ni catalyst in the glycerol steam reforming (2012) Appl Catal B - Environ, 123, pp. 379-390
dc.descriptionCheng, G.K., Foo, S.Y., Adesina, A.A., Steam reforming of glycerol over Ni/Al2O3 catalysts (2011) Catal Today, 178, pp. 25-33
dc.descriptionWang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in fixed bed reactor (2013) Chem Eng J, 220, pp. 133-142
dc.descriptionWang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Renewable hydrogen production from steam reforming of glycerol by Ni-Cu-Al, Ni-Cu-Mg, Ni-Mg catalysts (2013) Int J Hydrogen Energy, 38, pp. 3562-3571
dc.descriptionAhmed, S., Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells (2001) Int J Hydrogen Energy, 26, pp. 291-301
dc.descriptionCarrettin, S., McMorn, P., Johnston, P., Griffin, K., Kiely, C.J., Hutchings, G.J., Oxidation of glycerol using supported Pt, Pd and Au catalysts (2003) Phys Chem Chem Phys, 5, pp. 1329-1336
dc.descriptionRennard, D.C., Kruger, J.S., Schmidt, L.D., Autothermal catalytic partial oxidation of glycerol to syngas and non-equilibrium products (2009) Chem Sus Chem, 2, pp. 89-98
dc.descriptionRabenstein, G., Hacker, V., Hydrogen for fuel cells from ethanol by steam reforming, partial oxidation and combined auto-thermal reforming: A thermodynamic analysis (2008) J Power Sources, 185, pp. 1293-1304
dc.descriptionQi, A., Wang, S., Fu, G., Wu, D., Autothermal reforming of n-octane on Ru-based catalysts (2005) Appl Catal A - Gen, 293, pp. 71-82
dc.descriptionDauenhauer, P.J., Salge, J.R., Schmidt, L.D., Renewable hydrogen by autothermal steam reforming of volatile carbohydrates (2006) J Catal, 244, pp. 238-247
dc.descriptionDouette, A.M.D., Turn, S.Q., Wang, W., Keffer, V.I., Experimental investigation of hydrogen production from glycerin reforming (2007) Energy Fuels, 21, pp. 3499-3504
dc.descriptionEdwards, J.H., Maitra, A.M., The chemistry of methane reforming with carbon dioxide and its current and potential applications (1995) Fuel Process Technol, 42, pp. 269-289
dc.descriptionMizuno, T., Goto, M., Kodama, A., Hirose, T., Supercritical water oxidation of a model municipal solid waste (2000) Indust Eng Chem Res, 39, pp. 2807-2810
dc.descriptionKruse, A., Supercritical water gasification (2008) Biofuels Bioprod Biorefining, 2, pp. 415-437
dc.descriptionSavage, P.E., Heterogenous catalysis in supercritical water (2000) Catal Today, 62, pp. 167-173
dc.descriptionCalzavara, Y., Joussot-Dubien, C., Boissonnet, G., Sarrade, S., Evaluation of biomass gasification in supercritical water process for hydrogen production (2005) Energy Convers Manag, 46, pp. 615-631
dc.descriptionGuo, Y., Wang, S.Z., Xu, D.H., Gong, Y.M., Ma, H.H., Tang, X.Y., Review of catalytic supercritical water gasification for hydrogen production from biomass (2010) Renew Sustain Energy Rev, 14, pp. 334-343
dc.descriptionHao, X.H., Guo, L.J., Mao, X., Zhang, X.M., Chen, X.J., Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water (2003) Int J Hydrogen Energy, 28, pp. 55-64
dc.descriptionClifford, T., (1998) Fundamentals of Supercritical Fluids, , Oxford University Press New York
dc.descriptionMay, A., Salvadó, J., Torras, C., Montané, D., Catalytic gasification of glycerol in supercritical water (2010) Chem Eng J, 160, pp. 751-759
dc.descriptionSmith, W.R.M., Missen, R.W., (1982) Chemical Reaction Equilibrium Analysis: Theory and Algorithms, , JohnWiley & Sons
dc.descriptionPitzer, K.S., Curl, R.F., The volumetric and thermodynamic properties of fluids III. Empirical equation of the second virial coefficient (1957) J Am Chem Soc, 20, pp. 263-272
dc.descriptionTsonopoulos, C., An empirical correlation of second virial coefficients (1974) AIChE J, 20, pp. 263-272
dc.descriptionCastello, D., Fiori, L., Supercritical water gasification of biomass: Thermodynamic constraints (2011) Bioresour Technol, 102, pp. 7574-7582
dc.descriptionCastillo, J., Grossmann, I.E., Computation of phase and chemical equilibria (1981) Comput Chem Eng, 5, pp. 99-108
dc.descriptionFreitas, A.C.D., Guirardello, R., Oxidative reforming of methane for hydrogen and synthesis gas production: Thermodynamic equilibrium analysis (2012) J Nat Gas Chem, 21, pp. 571-580
dc.descriptionLu, Y., Guo, X., Zhang, X., Yan, Q., Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water (2007) Chem Eng J, 131, pp. 233-244
dc.descriptionNichita, D.V., Gomez, S., Luna, E., Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method (2002) Comput Chem Eng, 26, pp. 1703-1724
dc.descriptionRossi, C.C.R.S., Berezuk, M.E., Cardozo-Filho, L., Guirardello, R., Simultaneous calculation of chemical and phase equilibria using convexity analysis (2011) Comput Chem Eng, 35, pp. 1226-1237
dc.descriptionFreitas, A.C.D., Guirardello, R., Supercritical water gasification of glucose and cellulose for hydrogen and syngas production (2012) Chem Eng Trans, 27, pp. 361-366
dc.descriptionCastier, M., Solution of isochoric-isoenergetic flash problem by direct entropy maximization (2009) Fluid Phase Equilibria, 276, pp. 7-17
dc.descriptionWhite, W.B., Johnson, S.M., Danzig, G.B., Chemical equilibrium in complex mixtures (1958) J Chem Phys, 28, pp. 751-755
dc.descriptionBrooke, K., Meeraus, D., Raman, R., (1998) GAMS - A User's Manual
dc.descriptionPolling, B.P., Prausnitz, J.M., O'Connel, P.J., (2000) The Properties of Gases and Liquids, , 5th ed. McGraw Hill New York
dc.descriptionReid, R.P., Prausnitz, J.M., Sherwood, T.K., (1987) The Properties of Gases and Liquids, , 4th ed. McGraw Hill New York
dc.descriptionDippr, (2000) DIADWM Public V. 1.2. Design Institute for Physical Property Data. Information and Data Evaluation Manager
dc.descriptionAdhikari, S., Fernando, S.D., To, S.D.F., Bricka, R.M., Steele, P.H., Haryanto, A., Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts (2008) Energy Fuels, 22, pp. 1220-1226
dc.descriptionWang, X., Li, M., Li, S., Wang, H., Wang, S., Ma, X., Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent: A comparative study of thermodynamic and experimental work (2010) Fuel Process Technol, 91, pp. 1812-1818
dc.descriptionFreitas, A.C.D., Guirardello, R., Thermodynamic analysis of supercritical water gasification of microalgae biomass for hydrogen and syngas production (2013) Chem Eng Trans, 32, pp. 553-558
dc.languageen
dc.publisherElsevier Ltd
dc.relationInternational Journal of Hydrogen Energy
dc.rightsfechado
dc.sourceScopus
dc.titleComparison Of Several Glycerol Reforming Methods For Hydrogen And Syngas Production Using Gibbs Energy Minimization
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución