dc.creator | Freitas A.C.D. | |
dc.creator | Guirardello R. | |
dc.date | 2014 | |
dc.date | 2015-06-25T18:03:47Z | |
dc.date | 2015-11-26T15:06:06Z | |
dc.date | 2015-06-25T18:03:47Z | |
dc.date | 2015-11-26T15:06:06Z | |
dc.date.accessioned | 2018-03-28T22:16:37Z | |
dc.date.available | 2018-03-28T22:16:37Z | |
dc.identifier | | |
dc.identifier | International Journal Of Hydrogen Energy. Elsevier Ltd, v. 39, n. 31, p. 17969 - 17984, 2014. | |
dc.identifier | 3603199 | |
dc.identifier | 10.1016/j.ijhydene.2014.03.130 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84914148937&partnerID=40&md5=5a60ce10e6b4da108f56df843721f7d8 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/88067 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/88067 | |
dc.identifier | 2-s2.0-84914148937 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1257174 | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | This paper focuses on the comparison of different glycerol reforming technologies aimed to hydrogen and syngas production. The reactions of steam reforming, partial oxidation, autothermal reforming, dry reforming and supercritical water gasification were analyzed. For this, the Gibbs energy minimization approach was used in combination with the virial equation of state. The validation of the model was made between the simulations of the proposed model and both, simulated and experimental data obtained in the literature. The effects of modifications in the operational temperature, operational pressure and reactants composition were analyzed with regard to composition of the products. The effect of coke formation was discussed too. Generally, higher temperatures and lower pressures resulted in higher hydrogen and syngas production. All reforming technologies demonstrated to be feasible for use in hydrogen or synthesis gas production in respect of the products composition. The proposed model showed good predictive ability and low computational time (close to 1 s) to perform the calculation of the combined chemical and phase equilibrium for all systems analyzed. | |
dc.description | 39 | |
dc.description | 31 | |
dc.description | 17969 | |
dc.description | 17984 | |
dc.description | CAPES; São Paulo Research Foundation; 2011/20666-8; FAPESP; São Paulo Research Foundation | |
dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description | Saxena, R.C., Seal, D., Kumar, S., Goyal, H.B., Thermo-chemical routes for hydrogen rich gas from biomass: A review (2008) Renew Sustain Energy Rev, 12, pp. 1909-1927 | |
dc.description | Ma, F., Hanna, M.A., Biodiesel production: A review (1999) Bioresour Technol, 70, pp. 1-15 | |
dc.description | Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C., From glycerol to value added products (2007) Angew Chem Int Ed, 46, pp. 4434-4440 | |
dc.description | Vaidya, P.D., Rodrigues, A.E., Glycerol reforming for hydrogen production: A review (2009) Chem Eng Technol, 32, pp. 1463-1469 | |
dc.description | Zhang, B., Tang, X., Li, Y., Xu, Y., Shen, W., Hydrogen production from steam reforming of ethanol and glycerol over ceria supported metal catalysts (2007) Int J Hydrogen Energy, 32, pp. 2367-2373 | |
dc.description | Buffoni, I.N., Pompeo, F., Santori, G.F., Nichio, N.N., Nickel catalysts applied in steam reforming of glycerol for hydrogen production (2009) Catal Commun, 10, pp. 1656-1660 | |
dc.description | Adhikari, S., Fernando, S.D., Haryanto, A., Hydrogen production from glicerin by steam reforming over nickel catalysts (2008) Renew Energy, 33, pp. 1097-1100 | |
dc.description | Thyssen, V.V., Maia, T.A., Assaf, E.M., Ni supported on La2O3-SiO2 used to catalyze glycerol steam reforming (2013) Fuel, 105, pp. 358-363 | |
dc.description | Iriondo, A., Barrio, V.L., Cambra, J.F., Arias, P.L., Guemez, M.B., Sanchez, M.C., Glycerol steam reforming over Ni catalysts supported on ceria and ceria promoted alumina (2010) Int J Hydrogen Energy, 35, pp. 11622-11633 | |
dc.description | Pompeo, F., Santori, G.F., Nichio, N.N., Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts (2011) Catal Today, 172, pp. 183-188 | |
dc.description | Pompeo, F., Santori, G.F., Nichio, N.N., Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts (2010) Int J Hydrogen Energy, 35, pp. 8912-8920 | |
dc.description | Wang, H., Wang, X., Li, M., Li, S., Wang, S., Ma, X., Thermodynamic analysis of hydrogen production from glycerol autothermal reforming (2009) Int J Hydrogen Energy, 34, pp. 5683-5690 | |
dc.description | Wang, W., Thermodynamic analysis of glycerol partial oxidation for hydrogen production (2010) Fuel Process Technol, 91, pp. 1401-1408 | |
dc.description | Yang, G., Yu, H., Peng, F., Wang, H., Yang, J., Xie, D., Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol (2011) Renew Energy, 36, pp. 2120-2127 | |
dc.description | Byrd, A.J., Pant, K.K., Gupta, R.B., Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst (2008) Fuel, 87, pp. 2956-2960 | |
dc.description | Chakinala, A.G., Brilman, D.W.F., Van Swaaij, W.P.M., Kersten, S.R.A., Catalytic and non catalytic supercritical water gasification of microalgae and glycerol (2009) Indust Eng Chem Res, 49, pp. 1113-1122 | |
dc.description | Guo, S., Guo, L., Cao, C., Yin, J., Lu, Y., Zhang, X., Hydrogen production from glycerol by supercritical water gasification in a continuos flow tubular reactor (2012) Int J Hydrogen Energy, 37, pp. 5559-5568 | |
dc.description | Van Bennekon, J.G., Venderbosch, R.H., Assink, D., Heeres, H.J., Reforming of methanol and glycerol in supercritical water (2011) J Supercrit Fluids, 58, pp. 99-113 | |
dc.description | Voll, F.A.P., Rossi, C.C.R.S., Silva, C., Guirardello, R., Souza, R.O.M.A., Cabral, V.F., Thermodynamic analysis of supercritical water gasification of methanol, ethanol, glycerol, glucose and cellulose (2009) Int J Hydrogen Energy, 34, pp. 9737-9744 | |
dc.description | Wang, X., Li, M., Wang, M., Wang, H., Li, S., Wang, S., Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production (2009) Fuel, 88, pp. 2148-2153 | |
dc.description | Fernández, Y., Arennilas, A., Bermúdez, J.M., Menéndez, J.A., Comparative study of conventional and microwave assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst (2010) J Anal Appl Pyrolysis, 88, pp. 155-159 | |
dc.description | Kale, G.R., Kulkarni, B.D., Thermodynamic analysis of dry autothermal reforming of glycerol (2010) Fuel Process Technol, 91, pp. 520-530 | |
dc.description | Valliyappan, T., Bakhshi, N.N., Dalai, A.K., Pyrolysis of glycerol for the production of hydrogen or syngas (2008) Bioresour Technol, 99, pp. 4476-4483 | |
dc.description | Adhikari, S., Fernando, S., Gwaltney, S.R., Filip To, S.D., Bricka, R.M., Steele, P.H., A thermodynamic analysis of hydrogen production by steam reforming of glycerol (2007) Int J Hydrogen Energy, 32, pp. 2875-2880 | |
dc.description | Holladay, J.D., Hu, J., King, D.L., Wang, Y., An overview of hydrogen productions technologies (2009) Catal Today, 139, pp. 244-260 | |
dc.description | Rass-Hansen, J., Johansson, R., Moller, M., Christensen, C.H., Steam reforming of technical bioethanol for hydrogen production (2008) Int J Hydrogen Energy, 33, pp. 4547-4554 | |
dc.description | Adhikari, S., Fernando, S., Haryanto, A., Production of hydrogen by steam reforming of glicerin over alumina supported metal catalysts (2007) Catal Today, 129, pp. 355-364 | |
dc.description | Adhikari, S., Fernando, S., Haryanto, A., A comparative thermodynamic and experimental analysis on hydrogen production by steam reforming of glicerin (2007) Energy Fuels, 21, pp. 2306-2310 | |
dc.description | Slinn, M., Kendall, K., Mallon, C., Andrews, J., Steam reforming of biodiesel by-product to make renewable hydrogen (2008) Bioresour Technol, 99, pp. 5851-5858 | |
dc.description | Oliveira, E.L.G., Grande, C.A., Rodrigues, A.R.E., Methane steam reforming in large pore catalyst (2010) Chem Eng Sci, 65, pp. 1539-1550 | |
dc.description | Sanchez, E.A., Comelli, R.L.A., Hydrogen by glycerol steam reforming on a nickel alumina catalyst: Deactivation processes and regeneration (2012) Int J Hydrogen Energy, 37, pp. 14740-14746 | |
dc.description | Dieuzeide, M.L., Iannibeli, V., Jobbagi, M., Amadeo, N., Steam reforming of glycerol over Ni/Mg/γ-Al2O3 catalysts. Effect of calcination temperatures (2012) Int J Hydrogen Energy, 37, pp. 14926-14930 | |
dc.description | Bobadilla, L.F., Álvarez, A., Domínguez, M.I., Romero-Sarria, F., Centeno, M.A., Montes, M., Influence of the shape of Ni catalyst in the glycerol steam reforming (2012) Appl Catal B - Environ, 123, pp. 379-390 | |
dc.description | Cheng, G.K., Foo, S.Y., Adesina, A.A., Steam reforming of glycerol over Ni/Al2O3 catalysts (2011) Catal Today, 178, pp. 25-33 | |
dc.description | Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Hydrogen production from steam reforming of glycerol by Ni-Mg-Al based catalysts in fixed bed reactor (2013) Chem Eng J, 220, pp. 133-142 | |
dc.description | Wang, C., Dou, B., Chen, H., Song, Y., Xu, Y., Du, X., Renewable hydrogen production from steam reforming of glycerol by Ni-Cu-Al, Ni-Cu-Mg, Ni-Mg catalysts (2013) Int J Hydrogen Energy, 38, pp. 3562-3571 | |
dc.description | Ahmed, S., Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells (2001) Int J Hydrogen Energy, 26, pp. 291-301 | |
dc.description | Carrettin, S., McMorn, P., Johnston, P., Griffin, K., Kiely, C.J., Hutchings, G.J., Oxidation of glycerol using supported Pt, Pd and Au catalysts (2003) Phys Chem Chem Phys, 5, pp. 1329-1336 | |
dc.description | Rennard, D.C., Kruger, J.S., Schmidt, L.D., Autothermal catalytic partial oxidation of glycerol to syngas and non-equilibrium products (2009) Chem Sus Chem, 2, pp. 89-98 | |
dc.description | Rabenstein, G., Hacker, V., Hydrogen for fuel cells from ethanol by steam reforming, partial oxidation and combined auto-thermal reforming: A thermodynamic analysis (2008) J Power Sources, 185, pp. 1293-1304 | |
dc.description | Qi, A., Wang, S., Fu, G., Wu, D., Autothermal reforming of n-octane on Ru-based catalysts (2005) Appl Catal A - Gen, 293, pp. 71-82 | |
dc.description | Dauenhauer, P.J., Salge, J.R., Schmidt, L.D., Renewable hydrogen by autothermal steam reforming of volatile carbohydrates (2006) J Catal, 244, pp. 238-247 | |
dc.description | Douette, A.M.D., Turn, S.Q., Wang, W., Keffer, V.I., Experimental investigation of hydrogen production from glycerin reforming (2007) Energy Fuels, 21, pp. 3499-3504 | |
dc.description | Edwards, J.H., Maitra, A.M., The chemistry of methane reforming with carbon dioxide and its current and potential applications (1995) Fuel Process Technol, 42, pp. 269-289 | |
dc.description | Mizuno, T., Goto, M., Kodama, A., Hirose, T., Supercritical water oxidation of a model municipal solid waste (2000) Indust Eng Chem Res, 39, pp. 2807-2810 | |
dc.description | Kruse, A., Supercritical water gasification (2008) Biofuels Bioprod Biorefining, 2, pp. 415-437 | |
dc.description | Savage, P.E., Heterogenous catalysis in supercritical water (2000) Catal Today, 62, pp. 167-173 | |
dc.description | Calzavara, Y., Joussot-Dubien, C., Boissonnet, G., Sarrade, S., Evaluation of biomass gasification in supercritical water process for hydrogen production (2005) Energy Convers Manag, 46, pp. 615-631 | |
dc.description | Guo, Y., Wang, S.Z., Xu, D.H., Gong, Y.M., Ma, H.H., Tang, X.Y., Review of catalytic supercritical water gasification for hydrogen production from biomass (2010) Renew Sustain Energy Rev, 14, pp. 334-343 | |
dc.description | Hao, X.H., Guo, L.J., Mao, X., Zhang, X.M., Chen, X.J., Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water (2003) Int J Hydrogen Energy, 28, pp. 55-64 | |
dc.description | Clifford, T., (1998) Fundamentals of Supercritical Fluids, , Oxford University Press New York | |
dc.description | May, A., Salvadó, J., Torras, C., Montané, D., Catalytic gasification of glycerol in supercritical water (2010) Chem Eng J, 160, pp. 751-759 | |
dc.description | Smith, W.R.M., Missen, R.W., (1982) Chemical Reaction Equilibrium Analysis: Theory and Algorithms, , JohnWiley & Sons | |
dc.description | Pitzer, K.S., Curl, R.F., The volumetric and thermodynamic properties of fluids III. Empirical equation of the second virial coefficient (1957) J Am Chem Soc, 20, pp. 263-272 | |
dc.description | Tsonopoulos, C., An empirical correlation of second virial coefficients (1974) AIChE J, 20, pp. 263-272 | |
dc.description | Castello, D., Fiori, L., Supercritical water gasification of biomass: Thermodynamic constraints (2011) Bioresour Technol, 102, pp. 7574-7582 | |
dc.description | Castillo, J., Grossmann, I.E., Computation of phase and chemical equilibria (1981) Comput Chem Eng, 5, pp. 99-108 | |
dc.description | Freitas, A.C.D., Guirardello, R., Oxidative reforming of methane for hydrogen and synthesis gas production: Thermodynamic equilibrium analysis (2012) J Nat Gas Chem, 21, pp. 571-580 | |
dc.description | Lu, Y., Guo, X., Zhang, X., Yan, Q., Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water (2007) Chem Eng J, 131, pp. 233-244 | |
dc.description | Nichita, D.V., Gomez, S., Luna, E., Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method (2002) Comput Chem Eng, 26, pp. 1703-1724 | |
dc.description | Rossi, C.C.R.S., Berezuk, M.E., Cardozo-Filho, L., Guirardello, R., Simultaneous calculation of chemical and phase equilibria using convexity analysis (2011) Comput Chem Eng, 35, pp. 1226-1237 | |
dc.description | Freitas, A.C.D., Guirardello, R., Supercritical water gasification of glucose and cellulose for hydrogen and syngas production (2012) Chem Eng Trans, 27, pp. 361-366 | |
dc.description | Castier, M., Solution of isochoric-isoenergetic flash problem by direct entropy maximization (2009) Fluid Phase Equilibria, 276, pp. 7-17 | |
dc.description | White, W.B., Johnson, S.M., Danzig, G.B., Chemical equilibrium in complex mixtures (1958) J Chem Phys, 28, pp. 751-755 | |
dc.description | Brooke, K., Meeraus, D., Raman, R., (1998) GAMS - A User's Manual | |
dc.description | Polling, B.P., Prausnitz, J.M., O'Connel, P.J., (2000) The Properties of Gases and Liquids, , 5th ed. McGraw Hill New York | |
dc.description | Reid, R.P., Prausnitz, J.M., Sherwood, T.K., (1987) The Properties of Gases and Liquids, , 4th ed. McGraw Hill New York | |
dc.description | Dippr, (2000) DIADWM Public V. 1.2. Design Institute for Physical Property Data. Information and Data Evaluation Manager | |
dc.description | Adhikari, S., Fernando, S.D., To, S.D.F., Bricka, R.M., Steele, P.H., Haryanto, A., Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts (2008) Energy Fuels, 22, pp. 1220-1226 | |
dc.description | Wang, X., Li, M., Li, S., Wang, H., Wang, S., Ma, X., Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent: A comparative study of thermodynamic and experimental work (2010) Fuel Process Technol, 91, pp. 1812-1818 | |
dc.description | Freitas, A.C.D., Guirardello, R., Thermodynamic analysis of supercritical water gasification of microalgae biomass for hydrogen and syngas production (2013) Chem Eng Trans, 32, pp. 553-558 | |
dc.language | en | |
dc.publisher | Elsevier Ltd | |
dc.relation | International Journal of Hydrogen Energy | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Comparison Of Several Glycerol Reforming Methods For Hydrogen And Syngas Production Using Gibbs Energy Minimization | |
dc.type | Actas de congresos | |