Artículos de revistas
Hypothalamic Inflammation And The Central Nervous System Control Of Energy Homeostasis
Registro en:
Molecular And Cellular Endocrinology. Elsevier Ireland Ltd, v. 397, n. 01/02/15, p. 15 - 22, 2014.
3037207
10.1016/j.mce.2014.06.005
2-s2.0-84914163652
Autor
Pimentel G.D.
Ganeshan K.
Carvalheira J.B.C.
Institución
Resumen
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states. 397 01/02/15 15 22 Anand, B.K., Brobeck, J.R., Hypothalamic control of food intake in rats and cats (1951) Yale J. Biol. Med, 24, pp. 123-140 Arkan, M.C., Hevener, A.L., Greten, F.R., Maeda, S., Li, Z.W., Long, J.M., IKK-beta links inflammation to obesity-induced insulin resistance (2005) Nat. Med, 11, pp. 191-198 Arruda, A.P., Milanski, M., Coope, A., Torsoni, A.S., Ropelle, E., Carvalho, D.P., Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion (2011) Endocrinology, 152, pp. 1314-1326 Bernard, C., Leçons de physiologie expérimentale appliqupée à la mpédecine: faites au collège de France (1854), Tome I, Cours du semestre d'hiver, Paris, J.-B. BaillièreBjorbaek, C., Uotani, S., da Silva, B., Flier, J.S., Divergent signaling capacities of the long and short isoforms of the leptin receptor (1997) J. Biol. Chem, 272, pp. 32686-32695 Bjorbaek, C., Buchholz, R.M., Davis, S.M., Bates, S.H., Pierroz, D.D., Gu, H., Divergent roles of SHP-2 in ERK activation by leptin receptors (2001) J. Biol. Chem, 276, pp. 4747-4755 Bjorbak, C., Lavery, H.J., Bates, S.H., Olson, R.K., Davis, S.M., Flier, J.S., SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985 (2000) J. Biol. Chem, 275, pp. 40649-40657 Bode, J.G., Nimmesgern, A., Schmitz, J., Schaper, F., Schmitt, M., Frisch, W., LPS and TNFalpha induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages (1999) FEBS Lett, 463, pp. 365-370 Bruning, J.C., Gautam, D., Burks, D.J., Gillette, J., Schubert, M., Orban, P.C., Role of brain insulin receptor in control of body weight and reproduction (2000) Science, 289, pp. 2122-2125 Cai, D., Yuan, M., Frantz, D.F., Melendez, P.A., Hansen, L., Lee, J., Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB (2005) Nat. Med, 11, pp. 183-190 Calegari, V.C., Torsoni, A.S., Vanzela, E.C., Araujo, E.P., Morari, J., Zoppi, C.C., Inflammation of the hypothalamus leads to defective pancreatic islet function (2011) J. Biol. Chem, 286, pp. 12870-12880 Cao, L., Liu, X., Lin, E.J., Wang, C., Choi, E.Y., Riban, V., Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition (2010) Cell, 142, pp. 52-64 Caricilli, A.M., Picardi, P.K., de Abreu, L.L., Ueno, M., Prada, P.O., Ropelle, E.R., Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice (2011) PLoS Biol, 9, p. e1001212 Carvalheira, J.B., Siloto, R.M., Ignacchitti, I., Brenelli, S.L., Carvalho, C.R., Leite, A., Insulin modulates leptin-induced STAT3 activation in rat hypothalamus (2001) FEBS Lett, 500, pp. 119-124 Carvalheira, J.B., Ribeiro, E.B., Araujo, E.P., Guimaraes, R.B., Telles, M.M., Torsoni, M., Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats (2003) Diabetologia, 46, pp. 1629-1640 Carvalheira, J.B., Torsoni, M.A., Ueno, M., Amaral, M.E., Araujo, E.P., Velloso, L.A., Cross-talk between the insulin and leptin signaling systems in rat hypothalamus (2005) Obes. Res, 13, pp. 48-57 Carvalheira, J.B., Qiu, Y., Chawla, A., Blood spotlight on leukocytes and obesity (2013) Blood, 122, pp. 3263-3267 Carvalho-Filho, M.A., Ueno, M., Hirabara, S.M., Seabra, A.B., Carvalheira, J.B., de Oliveira, M.G., S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance (2005) Diabetes, 54, pp. 959-967 Chakravarthy, M.V., Zhu, Y., Yin, L., Coleman, T., Pappan, K.L., Marshall, C.A., Inactivation of hypothalamic FAS protects mice from diet-induced obesity and inflammation (2009) J. Lipid Res, 50, pp. 630-640 Coleman, D.L., Effects of parabiosis of obese with diabetes and normal mice (1973) Diabetologia, 9, pp. 294-298 Coleman, D.L., Hummel, K.P., The influence of genetic background on the expression of the obese (Ob) gene in the mouse (1973) Diabetologia, 9, pp. 287-293 Cota, D., Proulx, K., Smith, K.A., Kozma, S.C., Thomas, G., Woods, S.C., Hypothalamic mTOR signaling regulates food intake (2006) Science, 312, pp. 927-930 Dagon, Y., Hur, E., Zheng, B., Wellenstein, K., Cantley, L.C., Kahn, B.B., P70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin's effect on food intake (2012) Cell Metab, 16, pp. 104-112 De Souza, C.T., Araujo, E.P., Bordin, S., Ashimine, R., Zollner, R.L., Boschero, A.C., Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus (2005) Endocrinology, 146, pp. 4192-4199 DeBoer, M.D., Zhu, X.X., Levasseur, P., Meguid, M.M., Suzuki, S., Inui, A., Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia (2007) Endocrinology, 148, pp. 3004-3012 Ehlting, C., Lai, W.S., Schaper, F., Brenndorfer, E.D., Matthes, R.J., Heinrich, P.C., Regulation of suppressor of cytokine signaling 3 (SOCS3) mRNA stability by TNF-alpha involves activation of the MKK6/p38MAPK/MK2 cascade (2007) J. Immunol, 178, pp. 2813-2826 Ehses, J.A., Meier, D.T., Wueest, S., Rytka, J., Boller, S., Wielinga, P.Y., Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet (2010) Diabetologia, 53, pp. 1795-1806 Emanuelli, B., Peraldi, P., Filloux, C., Chavey, C., Freidinger, K., Hilton, D.J., SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice (2001) J. Biol. Chem, 276, pp. 47944-47949 Erin, N., Duymus, O., Ozturk, S., Demir, N., Activation of vagus nerve by semapimod alters substance P levels and decreases breast cancer metastasis (2012) Regul. Pept, 179, pp. 101-108 Faubert, B., Boily, G., Izreig, S., Griss, T., Samborska, B., Dong, Z., AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo (2013) Cell Metab, 17, pp. 113-124 Ferrante, A.W., Obesity-induced inflammation: a metabolic dialogue in the language of inflammation (2007) J. Int. Med, 262, pp. 408-414 Flores, M.B., Rocha, G.Z., Damas-Souza, D.M., Osorio-Costa, F., Dias, M.M., Ropelle, E.R., Obesity-induced increase in tumor necrosis factor-alpha leads to development of colon cancer in mice (2012) Gastroenterology, 143 (53-741), pp. e1-e4 Foster, M.W., McMahon, T.J., Stamler, J.S., S-nitrosylation in health and disease (2003) Trends Mol. Med, 9, pp. 160-168 Gelin, J., Moldawer, L.L., Lonnroth, C., Sherry, B., Chizzonite, R., Lundholm, K., Role of endogenous tumor necrosis factor alpha and interleukin 1 for experimental tumor growth and the development of cancer cachexia (1991) Cancer Res, 51, pp. 415-421 Ghilardi, N., Skoda, R.C., The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line (1997) Mol. Endocrinol, 11, pp. 393-399 Ghilardi, N., Ziegler, S., Wiestner, A., Stoffel, R., Heim, M.H., Skoda, R.C., Defective STAT signaling by the leptin receptor in diabetic mice (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 6231-6235 Han, M.S., Jung, D.Y., Morel, C., Lakhani, S.A., Kim, J.K., Flavell, R.A., JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation (2013) Science, 339, pp. 218-222 Hanahan, D., Weinberg, R.A., Hallmarks of cancer: the next generation (2011) Cell, 144, pp. 646-674 Hardie, D.G., Ross, F.A., Hawley, S.A., AMPK: a nutrient and energy sensor that maintains energy homeostasis (2012) Nat. Rev. Mol. Cell Biol, 13, pp. 251-262 Haslett, P.A., Anticytokine approaches to the treatment of anorexia and cachexia (1998) Semin. Oncol, 25, pp. 53-57 Hervey, G.R., The effects of lesions in the hypothalamus in parabiotic rats (1959) J. Physiol, 145, pp. 336-352 Heymsfield, S.B., Greenberg, A.S., Fujioka, K., Dixon, R.M., Kushner, R., Hunt, T., Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial (1999) JAMA, 282, pp. 1568-1575 Hirosumi, J., Tuncman, G., Chang, L., Gorgun, C.Z., Uysal, K.T., Maeda, K., A central role for JNK in obesity and insulin resistance (2002) Nature, 420, pp. 333-336 Holzer, R.G., Park, E.J., Li, N., Tran, H., Chen, M., Choi, C., Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation (2011) Cell, 147, pp. 173-184 Hopkins, S.J., Rothwell, N.J., Cytokines and the nervous system. I: Expression and recognition (1995) Trends Neurosci, 18, pp. 83-88 Hossain, P., Kawar, B., El Nahas, M., Obesity and diabetes in the developing world-a growing challenge (2007) N Eng. J. Med, 356, pp. 213-215 Hotamisligil, G.S., Inflammation and metabolic disorders (2006) Nature, 444, pp. 860-867 Hotamisligil, G.S., Shargill, N.S., Spiegelman, B.M., Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance (1993) Science, 259, pp. 87-91 Inoki, K., Zhu, T., Guan, K.L., TSC2 mediates cellular energy response to control cell growth and survival (2003) Cell, 115, pp. 577-590 Iyer, A., Fairlie, D.P., Prins, J.B., Hammock, B.D., Brown, L., Inflammatory lipid mediators in adipocyte function and obesity (2010) Nat. Rev. Endocrinol, 6, pp. 71-82 Kellerer, M., Koch, M., Metzinger, E., Mushack, J., Capp, E., Haring, H.U., Leptin activates PI-3 kinase in C2C12 myotubes via janus kinase-2 (JAK-2) and insulin receptor substrate-2 (IRS-2) dependent pathways (1997) Diabetologia, 40, pp. 1358-1362 Kiba, T., Tanaka, K., Endo, O., Inoue, S., Role of vagus nerve in increased DNA synthesis after hypothalamic ventromedial lesions in rat liver (1992) Am. J. Physiol, 262. , G483-7 Kievit, P., Howard, J.K., Badman, M.K., Balthasar, N., Coppari, R., Mori, H., Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells (2006) Cell Metab, 4, pp. 123-132 Konner, A.C., Bruning, J.C., Selective insulin and leptin resistance in metabolic disorders (2012) Cell Metab, 16, pp. 144-152 Lage, R., Dieguez, C., Vidal-Puig, A., Lopez, M., AMPK: a metabolic gauge regulating whole-body energy homeostasis (2008) Trends Mol. Med, 14, pp. 539-549 Laviano, A., Gleason, J.R., Meguid, M.M., Yang, Z.J., Cangiano, C., Rossi Fanelli, F., Effects of intra-VMN mianserin and IL-1ra on meal number in anorectic tumor-bearing rats (2000) J. Invest. Med, 48, pp. 40-48 Laviano, A., Meguid, M.M., Rossi-Fanelli, F., Cancer anorexia: clinical implications, pathogenesis, and therapeutic strategies (2003) Lancet Oncol, 4, pp. 686-694 Lee, E.Y., Inoue, S., Senoo, A., Shimizu, H., Suzuki, Y., Ishizuka, N., Beneficial effects of ventromedial hypothalamus (VMH) lesioning on function and morphology of the liver after hepatectomy in rats (2011) Brain Res, 1421, pp. 82-89 Licinio, J., Wong, M.L., Pathways and mechanisms for cytokine signaling of the central nervous system (1997) J. Clin. Invest, 100, pp. 2941-2947 Lira, F.S., Yamashita, A.S., Rosa, J.C., Tavares, F.L., Caperuto, E., Carnevali, L.C., Hypothalamic inflammation is reversed by endurance training in anorectic-cachectic rats (2011) Nutr. Metab (Lond)., 8, p. 60 Liu, X., McMurphy, T., Xiao, R., Slater, A., Huang, W., Cao, L., Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice (2014) Mol. Ther Lopez, M., Lage, R., Saha, A.K., Perez-Tilve, D., Vazquez, M.J., Varela, L., Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin (2008) Cell Metab, 7, pp. 389-399 Lopez, M., Varela, L., Vazquez, M.J., Rodriguez-Cuenca, S., Gonzalez, C.R., Velagapudi, V.R., Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance (2010) Nat. Med, 16, pp. 1001-1008 Lumeng, C.N., Bodzin, J.L., Saltiel, A.R., Obesity induces a phenotypic switch in adipose tissue macrophage polarization (2007) J. Clin. Invest, 117, pp. 175-184 Mantovani, G., Maccio, A., Lai, P., Massa, E., Ghiani, M., Santona, M.C., Cytokine activity in cancer-related anorexia/cachexia: role of megestrol acetate and medroxyprogesterone acetate (1998) Semin. Oncol, 25, pp. 45-52 Marshall, H.E., Hess, D.T., Stamler, J.S., S-nitrosylation: physiological regulation of NF-kappaB (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 8841-8842 de Martinez Morentin, P.B., Martinez-Sanchez, N., Roa, J., Ferno, J., Nogueiras, R., Tena-Sempere, M., Hypothalamic mTOR: the rookie energy sensor (2014) Curr. Mol. Med, 14, pp. 3-21 Martins, L., Fernandez-Mallo, D., Novelle, M.G., Vazquez, M.J., Tena-Sempere, M., Nogueiras, R., Hypothalamic mTOR signaling mediates the orexigenic action of ghrelin (2012) PLoS ONE, 7, p. e46923 Matthys, P., Billiau, A., Cytokines and cachexia (1997) Nutrition, 13, pp. 763-770 Mayer, C.M., Belsham, D.D., Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5' monophosphate-activated protein kinase activation (2010) Endocrinology, 151, pp. 576-585 McNay, D.E., Briancon, N., Kokoeva, M.V., Maratos-Flier, E., Flier, J.S., Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice (2012) J. Clin. Invest, 122, pp. 142-152 Medzhitov, R., Origin and physiological roles of inflammation (2008) Nature, 454, pp. 428-435 Meng, Q., Cai, D., Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway (2011) J. Biol. Chem, 286, pp. 32324-32332 Mercer, J.G., Hoggard, N., Williams, L.M., Lawrence, C.B., Hannah, L.T., Trayhurn, P., Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization (1996) FEBS Lett, 387, pp. 113-116 Milanski, M., Degasperi, G., Coope, A., Morari, J., Denis, R., Cintra, D.E., Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity (2009) J. Neurosci, 29, pp. 359-370 Milanski, M., Arruda, A.P., Coope, A., Ignacio-Souza, L.M., Nunez, C.E., Roman, E.A., Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver (2012) Diabetes, 61, pp. 1455-1462 Miller, N.E., Experiments on motivation. Studies combining psychological, physiological, and pharmacological techniques (1957) Science, 126, pp. 1271-1278 Moldawer, L.L., Rogy, M.A., Lowry, S.F., The role of cytokines in cancer cachexia (1992) JPEN J. Parenter Enteral Nutr, 16, pp. 43S-49S Moraes, J.C., Coope, A., Morari, J., Cintra, D.E., Roman, E.A., Pauli, J.R., High-fat diet induces apoptosis of hypothalamic neurons (2009) PLoS ONE, 4, p. e5045 Myers, M.G., Cowley, M.A., Munzberg, H., Mechanisms of leptin action and leptin resistance (2008) Annu. Rev. Physiol, 70, pp. 537-556 Myers, M.G., Leibel, R.L., Seeley, R.J., Schwartz, M.W., Obesity and leptin resistance: distinguishing cause from effect (2010) Trends Endocrinol. Metab, 21, pp. 643-651 Nakamura, T., Furuhashi, M., Li, P., Cao, H., Tuncman, G., Sonenberg, N., Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis (2010) Cell, 140, pp. 338-348 Nathan, C., Ding, A., Nonresolving inflammation (2010) Cell, 140, pp. 871-882 Nguyen, M.T., Favelyukis, S., Nguyen, A.K., Reichart, D., Scott, P.A., Jenn, A., A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways (2007) J. Biol. Chem, 282, pp. 35279-35292 Nguyen, K.D., Qiu, Y., Cui, X., Goh, Y.P., Mwangi, J., David, T., Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis (2011) Nature, 480, pp. 104-108 Niswender, K.D., Baskin, D.G., Schwartz, M.W., Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis (2004) Trends Endocrinol. Metab, 15, pp. 362-369 Noguchi, Y., Yoshikawa, T., Matsumoto, A., Svaninger, G., Gelin, J., Are cytokines possible mediators of cancer cachexia? (1996) Surg. Today, 26, pp. 467-475 Odegaard, J.I., Chawla, A., Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis (2013) Science, 339, pp. 172-177 Odegaard, J.I., Chawla, A., The immune system as a sensor of the metabolic state (2013) Immunity, 38, pp. 644-654 Okin, D., Medzhitov, R., Evolution of inflammatory diseases (2012) Curr. Biol, 22, pp. R733-R740 Olefsky, J.M., Glass, C.K., Macrophages, inflammation, and insulin resistance (2010) Annu. Rev. Physiol, 72, pp. 219-246 O'Neill, L.A., Hardie, D.G., Metabolism of inflammation limited by AMPK and pseudo-starvation (2013) Nature, 493, pp. 346-355 Osório-Costa, F., Carvalheira, J.C., TNF-α in obesity-associated colon cancer (2013) Trans. Gastrointest. Cancer, 2 (4), pp. 179-193. , 2, 15 Pal, A., Barber, T.M., Van de Bunt, M., Rudge, S.A., Zhang, Q., Lachlan, K.L., PTEN mutations as a cause of constitutive insulin sensitivity and obesity (2012) N Eng. J. Med, 367, pp. 1002-1011 Park, E.J., Lee, J.H., Yu, G.Y., He, G., Ali, S.R., Holzer, R.G., Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression (2010) Cell, 140, pp. 197-208 Phillips, M.S., Liu, Q., Hammond, H.A., Dugan, V., Hey, P.J., Caskey, C.J., Leptin receptor missense mutation in the fatty Zucker rat (1996) Nat. Genet, 13, pp. 18-19 Pimentel, G.D., Lira, F.S., Rosa, J.C., Oliveira, J.L., Losinskas-Hachul, A.C., Souza, G.I., Intake of trans fatty acids during gestation and lactation leads to hypothalamic inflammation via TLR4/NFkappaBp65 signaling in adult offspring (2012) J. Nutr. Biochem, 23, pp. 265-271 Posey, K.A., Clegg, D.J., Printz, R.L., Byun, J., Morton, G.J., Vivekanandan-Giri, A., Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet (2009) Am. J. Physiol. Endocrinol. Metab, 296. , E1003-12 Prada, P.O., Zecchin, H.G., Gasparetti, A.L., Torsoni, M.A., Ueno, M., Hirata, A.E., (2005), 146, pp. 1576-1587Purkayastha, S., Zhang, G., Cai, D., Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB (2011) Nat. Med, 17, pp. 883-887 Radley-Crabb, H.G., Marini, J.C., Sosa, H.A., Castillo, L.I., Grounds, M.D., Fiorotto, M.L., Dystropathology increases energy expenditure and protein turnover in the mdx mouse model of duchenne muscular dystrophy (2014) PLoS ONE, 9, p. e89277 Ranson, S.W., Fisher, C., Ingram, W.R., Adiposity and diabetes mellitus in a monkey with hypothalamic lesions (1938) Endocrinology, 23, pp. 175-181 Reynaert, N.L., Ckless, K., Korn, S.H., Vos, N., Guala, A.S., Wouters, E.F., Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 8945-8950 Ropelle, E.R., Pauli, J.R., Zecchin, K.G., Ueno, M., de Souza, C.T., Morari, J., A central role for neuronal adenosine 5'-monophosphate-activated protein kinase in cancer-induced anorexia (2007) Endocrinology, 148, pp. 5220-5229 Ropelle, E.R., Pauli, J.R., Fernandes, M.F., Rocco, S.A., Marin, R.M., Morari, J., A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss (2008) Diabetes, 57, pp. 594-605 Ropelle, E.R., Flores, M.B., Cintra, D.E., Rocha, G.Z., Pauli, J.R., Morari, J., IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition (2010) PLoS Biol, 8, p. e1000465 Ropelle, E.R., Pauli, J.R., Cintra, D.E., da Silva, A.S., De Souza, C.T., Guadagnini, D., Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice (2013) Diabetes, 62, pp. 466-470 Rother, E., Kuschewski, R., Alcazar, M.A., Oberthuer, A., Bae-Gartz, I., Vohlen, C., Hypothalamic JNK1 and IKKbeta activation and impaired early postnatal glucose metabolism after maternal perinatal high-fat feeding (2012) Endocrinology, 153, pp. 770-781 Rothwell, N.J., Hopkins, S.J., Cytokines and the nervous system II: Actions and mechanisms of action (1995) Trends Neurosci, 18, pp. 130-136 Saberi, M., Woods, N.B., de Luca, C., Schenk, S., Lu, J.C., Bandyopadhyay, G., Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice (2009) Cell Metab, 10, pp. 419-429 Saper, C.B., Romanovsky, A.A., Scammell, T.E., Neural circuitry engaged by prostaglandins during the sickness syndrome (2012) Nat. Neurosci, 15, pp. 1088-1095 Scarlett, J.M., Jobst, E.E., Enriori, P.J., Bowe, D.D., Batra, A.K., Grant, W.F., Regulation of central melanocortin signaling by interleukin-1 beta (2007) Endocrinology, 148, pp. 4217-4225 Schneider, J.G., Finck, B.N., Ren, J., Standley, K.N., Takagi, M., Maclean, K.H., ATM-dependent suppression of stress signaling reduces vascular disease in metabolic syndrome (2006) Cell Metab, 4, pp. 377-389 Schwartz, M.W., Seeley, R.J., Campfield, L.A., Burn, P., Baskin, D.G., Identification of targets of leptin action in rat hypothalamus (1996) J. Clin. Invest, 98, pp. 1101-1106 Scrivo, R., Vasile, M., Bartosiewicz, I., Valesini, G., Inflammation as "common soil" of the multifactorial diseases (2011) Autoimmun. Rev, 10, pp. 369-374 Sell, H., Habich, C., Eckel, J., Adaptive immunity in obesity and insulin resistance (2012) Nat. Rev. Endocrinol, 8, pp. 709-716 Senn, J.J., Klover, P.J., Nowak, I.A., Zimmers, T.A., Koniaris, L.G., Furlanetto, R.W., Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes (2003) J. Biol. Chem, 278, pp. 13740-13746 Sherry, B.A., Gelin, J., Fong, Y., Marano, M., Wei, H., Cerami, A., Anticachectin/tumor necrosis factor-alpha antibodies attenuate development of cachexia in tumor models (1989) Faseb J., 3, pp. 1956-1962 Shi, H., Tzameli, I., Bjorbaek, C., Flier, J.S., Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling (2004) J. Biol. Chem, 279, pp. 34733-34740 Shi, H., Kokoeva, M.V., Inouye, K., Tzameli, I., Yin, H., Flier, J.S., TLR4 links innate immunity and fatty acid-induced insulin resistance (2006) J. Clin. Invest, 116, pp. 3015-3025 Solinas, G., Vilcu, C., Neels, J.G., Bandyopadhyay, G.K., Luo, J.L., Naugler, W., JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity (2007) Cell Metab, 6, pp. 386-397 Speakman, J.R., A nonadaptive scenario explaining the genetic predisposition to obesity: the "predation release" hypothesis (2007) Cell Metab, 6, pp. 5-12 Stamler, J.S., Hess, D.T., Nascent nitrosylases (2010) Nat. Cell Biol, 12, pp. 1024-1026 Sternberg, E.M., Neural-immune interactions in health and disease (1997) J. Clin. Invest, 100, pp. 2641-2647 Tabas, I., Glass, C.K., Anti-inflammatory therapy in chronic disease: challenges and opportunities (2013) Science, 339, pp. 166-172 Takeda, K., Akira, S., TLR signaling pathways (2004) Semin. Immunol, 16, pp. 3-9 Tartaglia, L.A., Dembski, M., Weng, X., Deng, N., Culpepper, J., Devos, R., Identification and expression cloning of a leptin receptor, OB-R (1995) Cell, 83, pp. 1263-1271 Teitelbaum, P., Stellar, E., Recovery from the failure to eat produced by hypothalamic lesions (1954) Science, 120, pp. 894-895 Thaler, J.P., Schwartz, M.W., Minireview: inflammation and obesity pathogenesis: the hypothalamus heats up (2010) Endocrinology, 151, pp. 4109-4115 Thaler, J.P., Yi, C.X., Schur, E.A., Guyenet, S.J., Hwang, B.H., Dietrich, M.O., Obesity is associated with hypothalamic injury in rodents and humans (2012) J. Clin. Invest, 122, pp. 153-162 Tisdale, M.J., Biology of cachexia (1997) J. Nat. Cancer Inst, 89, pp. 1763-1773 Tobias, D.K., Pan, A., Jackson, C.L., O'Reilly, E.J., Ding, E.L., Willett, W.C., Body-mass index and mortality among adults with incident type 2 diabetes (2014) N Eng. J. Med, 370, pp. 233-244 Tracey, K.J., The inflammatory reflex (2002) Nature, 420, pp. 853-859 Tracey, K.J., Physiology and immunology of the cholinergic antiinflammatory pathway (2007) J. Clin. Invest, 117, pp. 289-296 Tsukumo, D.M., Carvalho-Filho, M.A., Carvalheira, J.B., Prada, P.O., Hirabara, S.M., Schenka, A.A., Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance (2007) Diabetes, 56, pp. 1986-1998 Ueki, K., Kondo, T., Kahn, C.R., Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms (2004) Mol. Cell Biol, 24, pp. 5434-5446 Vaisse, C., Halaas, J.L., Horvath, C.M., Darnell, J.E., Stoffel, M., Friedman, J.M., Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice (1996) Nat. Genet, 14, pp. 95-97 Varela, L., Martinez-Sanchez, N., Gallego, R., Vazquez, M.J., Roa, J., Gandara, M., Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism (2012) J. Pathol, 227, pp. 209-222 Warburg, O., On the origin of cancer cells (1956) Science, 123, pp. 309-314 Weisberg, S.P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R.L., Ferrante, A.W., Obesity is associated with macrophage accumulation in adipose tissue (2003) J. Clin. Invest, 112, pp. 1796-1808 Weisberg, S.P., Hunter, D., Huber, R., Lemieux, J., Slaymaker, S., Vaddi, K., CCR2 modulates inflammatory and metabolic effects of high-fat feeding (2006) J. Clin. Invest, 116, pp. 115-124 Woods, A.J., Stock, M.J., Leptin activation in hypothalamus (1996) Nature, 381, p. 745 Woods, S.C., Lotter, E.C., McKay, L.D., Porte, D., Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons (1979) Nature, 282, pp. 503-505 Wu, J.J., Roth, R.J., Anderson, E.J., Hong, E.G., Lee, M.K., Choi, C.S., Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity (2006) Cell Metab, 4, pp. 61-73 Xu, A.W., Kaelin, C.B., Takeda, K., Akira, S., Schwartz, M.W., Barsh, G.S., PI3K integrates the action of insulin and leptin on hypothalamic neurons (2005) J. Clin. Invest, 115, pp. 951-958 Yi, C.X., Al-Massadi, O., Donelan, E., Lehti, M., Weber, J., Ress, C., Exercise protects against high-fat diet-induced hypothalamic inflammation (2012) Physiol. Behav, 106, pp. 485-490 Yoshimoto, S., Loo, T.M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome (2013) Nature, 499, pp. 97-101 Zabolotny, J.M., Bence-Hanulec, K.K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., PTP1B regulates leptin signal transduction in vivo (2002) Dev. Cell, 2, pp. 489-495 Zabolotny, J.M., Kim, Y.B., Welsh, L.A., Kershaw, E.E., Neel, B.G., Kahn, B.B., Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo (2008) J. Biol. Chem, 283, pp. 14230-14241 Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., Friedman, J.M., Positional cloning of the mouse obese gene and its human homologue (1994) Nature, 372, pp. 425-432 Zhang, X., Zhang, G., Zhang, H., Karin, M., Bai, H., Cai, D., Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity (2008) Cell, 135, pp. 61-73 Zheng, W., McLerran, D.F., Rolland, B., Zhang, X., Inoue, M., Matsuo, K., Association between body-mass index and risk of death in more than 1 million Asians (2011) N Eng. J. Med, 364, pp. 719-729