Artículos de revistas
Leaf Manganese Accumulation And Phosphorus-acquisition Efficiency
Registro en:
Trends In Plant Science. Elsevier Ltd, v. 20, n. 2, p. 83 - 90, 2015.
13601385
10.1016/j.tplants.2014.10.007
2-s2.0-84922760343
Autor
Lambers H.
Hayes P.E.
Laliberte E.
Oliveira R.S.
Turner B.L.
Institución
Resumen
Plants that deploy a phosphorus (P)-mobilising strategy based on the release of carboxylates tend to have high leaf manganese concentrations ([Mn]). This occurs because the carboxylates mobilise not only soil inorganic and organic P, but also a range of micronutrients, including Mn. Concentrations of most other micronutrients increase to a small extent, but Mn accumulates to significant levels, even when plants grow in soil with low concentrations of exchangeable Mn availability. Here, we propose that leaf [Mn] can be used to select for genotypes that are more efficient at acquiring P when soil P availability is low. Likewise, leaf [Mn] can be used to screen for belowground functional traits related to nutrient-acquisition strategies among species in low-P habitats. 20 2 83 90 Lambers, H., How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae) (2013) Am. J. Bot., 100, pp. 263-288 Turner, B.L., Soil microbial biomass and the fate of phosphorus during long-term ecosystem development (2013) Plant Soil, 367, pp. 225-234 Pérez-Harguindeguy, N., New handbook for standardised measurement of plant functional traits worldwide (2013) Aust. J. Bot., 61, pp. 167-234 Scholz, R.W., Wellmer, F.-W., Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus? (2013) Global Environ. Change, 23, pp. 11-27 Simpson, R.J., Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems (2011) Plant Soil, 349, pp. 89-120 McHargue, J.S., The role of manganese in plants (1922) J. Am. Chem. Soc., 44, pp. 1592-1598 Broadley, M., Function of nutrients: micronutrients (2012) Marschner's Mineral Nutrition of Higher Plants, pp. 191-248. , Academic Press, P. Marschner (Ed.) Stout, P.R., Arnon, D.I., Experimental methods for the study of the role of copper, manganese, and zinc in the nutrition of higher plants (1939) Am. J. Bot., 26, pp. 144-149 Epstein, E., Bloom, A.J., (2005) Mineral Nutrition of Plants: Principles and Perspectives, , Sinauer El-Jaoual, T., Cox, D.A., Manganese toxicity in plants (1998) J. Plant Nutr., 21, pp. 353-386 Horiguchi, T., Mechanism of manganese toxicity and tolerance of plants (1988) Soil Sci. Plant Nutr., 34, pp. 65-73 Foy, C.D., The physiology of metal toxicity in plants (1978) Annu. Rev. Plant Physiol., 29, pp. 511-566 Lambers, H., (2008) Plant Physiological Ecology, , Springer Krämer, U., Metal hyperaccumulation in plants (2010) Annu. Rev. Plant Biol., 61, pp. 517-534 Brooks, R.R., Studies on manganese-accumulating Alyxia species from New Caledonia (1981) Taxon, 30, pp. 420-423 Pittman, J.K., Managing the manganese: molecular mechanisms of manganese transport and homeostasis (2005) New Phytol., 167, pp. 733-742 Delhaize, E., A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance (2007) Plant J., 51, pp. 198-210 Peiter, E., A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 8532-8537 Lambers, H., Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits (2006) Ann. Bot., 98, pp. 693-713 Jaffré, T., Accumulation du manganèse par les Protéacées de Nouvelle Calédonie (1979) C.R. Acad. Sci. Paris D, 289, pp. 425-428 Lambers, H., Plant nutrient-acquisition strategies change with soil age (2008) Trends Ecol. Evol., 23, pp. 95-103 Hayes, P., Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence (2014) J. Ecol., 102, pp. 396-410 Shane, M.W., Lambers, H., Cluster roots: a curiosity in context (2005) Plant Soil, 274, pp. 101-125 Gardner, W.K., The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface (1982) Plant Soil, 68, pp. 19-32 Fernando, D.R., Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for 'new' Mn hyperaccumulators and potential applications in taxonomy (2009) Ann. Bot., 103, pp. 931-939 Denton, M.D., Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus (2007) Plant Cell Environ., 30, pp. 1557-1565 Fernando, D.R., Manganese accumulation in the leaf mesophyll of four tree species: a PIXE/EDAX localization study (2006) New Phytol., 171, pp. 751-758 Rabier, J., Characterization of metal tolerance and accumulation in Grevillea exul var exul (2007) Int. J. Phytoremediation, 9, pp. 419-435 Child, R., Smith, A.N., Manganese toxicity in Grevillea robusta (1960) Nature, 186, p. 1067 Gardner, W.K., Boundy, K.A., The acquisition of phosphorus by Lupinus albus L. IV. The effect of interplanting wheat and white lupin on the growth and mineralc omposition of the two species (1983) Plant Soil, 70, pp. 391-402 Morton, J.F., Rooibos tea, Aspalathus linearis, a caffeineless, low-tannin beverage (1983) Econ. Bot., 37, pp. 164-173 Grierson, P.F., Attiwill, P.M., Chemical characteristics of the proteoid root mat of Banksia integrifolia L (1989) Aust. J. Bot., 37, pp. 137-143 Dinkelaker, B., Distribution and function of proteoid roots and other root clusters (1995) Bot. Acta, 108, pp. 193-200 Shane, M.W., Lambers, H., Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply (2005) Physiol. Plant, 124, pp. 441-450 Moraghan, J., Iron-manganese relationships in white lupine grown on a calciaquoll (1992) Soil Sci. Soc. Am. J., 56, pp. 471-475 Korshunova, Y.O., The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range (1999) Plant Mol. Biol., 40, pp. 37-44 Godo, G.H., Reisenauer, H.M., Plant effects on soil manganese availability (1980) Soil Sci. Soc. Am. J., 44, pp. 993-995 Jauregui, M.A., Reisenauer, H.M., Dissolution of oxides of manganese and iron by root exudate components (1982) Soil Sci. Soc. Am. J., 46, pp. 314-317 Xue, S.G., Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae) (2004) Environ. Pollut., 131, pp. 393-399 Xue, S.G., Manganese uptake and accumulation by two populations of Phytolacca acinosa Roxb. (Phytolaccaceae) (2005) Water Air Soil Pollution, 160, pp. 3-14 Xu, X., Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae) (2006) Plant Soil, 285, pp. 323-331 Liu, P., Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators (2010) Plant Soil, 335, pp. 385-395 Min, Y., Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana (2007) Miner. Eng., 20, pp. 188-190 Gerdemann, J.W., Vesicular-arbuscular mycorrhiza and plant growth (1968) Annu. Rev. Phytopathol., 6, pp. 397-418 Janos, D.P., Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth (1980) Ecology, 61, pp. 151-162 Brooks, R.R., Phytomining (1998) Trends Plant Sci., 3, pp. 359-362 Dou, C.M., Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana (2009) Plant Biol., 11, pp. 664-670 Massicotte, H.B., Anatomical aspects of field ectomycorrhizas on Polygonum viviparum (Polygonaceae) and Kobresia bellardii (Cyperaceae) (1998) Mycorrhiza, 7, pp. 287-292 Reay, P.F., Waugh, C., Mineral-element composition of Lupinus albus and Lupinus angustifolius in relation to manganese accumulation (1981) Plant Soil, 60, pp. 435-444 Pearse, S.J., Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status (2006) Plant Soil, 288, pp. 127-139 Abrahão, A., Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus (2014) Oecologia, 176, pp. 345-355 Wang, B., Qiu, Y.-L., Phylogenetic distribution and evolution of mycorrhizas in land plants (2006) Mycorrhiza, 16, pp. 299-363 Viani, R.A.G., Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species (2014) Perspect. Plant Ecol. Evol. Syst., 16, pp. 64-74 Smith, S.E., Read, D.J., (2008) Mycorrhizal Symbiosis, , Academic Press and Elsevier Hill, J., Does manganese play a role in the distribution of the eucalypts? (2001) Aust. J. Bot., 49, pp. 1-8 Grigg, A.M., Water relations and mineral nutrition of closely related woody plant species on desert dunes and interdunes (2008) Aust. J. Bot., 56, pp. 27-43 Mullette, K.J., Insoluble phosphorus usage by Eucalyptus (1974) Plant Soil, 41, pp. 199-205 Bidwell, S.D., Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia (2002) Funct. Plant Biol., 29, pp. 899-905 Fernando, D.R., In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX (2006) Plant Cell Environ., 29, pp. 1012-1020 Fernando, D.R., Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae) (2007) Plant Soil, 293, pp. 145-152 Fernando, D.R., Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis (2008) New Phytol., 177, pp. 178-185 Mizuno, T., Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae) (2008) J. Plant Nutr., 31, pp. 1811-1819 Mizuno, T., Continual pH lowering and manganese dioxide solubilization in the rhizosphere of the Mn-hyperaccumulator plant Chengiopanax sciadophylloides (2006) Soil Sci. Plant Nutr., 52, pp. 726-733 Memon, A.R., Yatazawa, M., Nature of manganese complexes in manganese accumulator plant - Acanthopanax sciadophylloides (1984) J. Plant Nutr., 7, pp. 961-974 Memon, A.R., Absorption and accumulation of iron, manganese and copper in plants in the temperate forest of central Japan (1979) Soil Sci. Plant Nutr., 25, pp. 611-620 Mizuno, T., Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. et Sav. and its correlation with calcium accumulation (2013) Soil Sci. Plant Nutr., 59, pp. 591-602 Mizuno, T., Cloning of ZIP family metal transporter genes from the manganese hyperaccumulator plant Chengiopanax sciadophylloides, and its metal transport and resistance abilities in yeast (2008) Soil Sci. Plant Nutr., 54, pp. 86-94 Yang, S.X., Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba (2008) Plant Soil Environ., 54, pp. 441-446 Pedas, P., Elevated phosphorus impedes manganese acquisition by barley plants (2011) Front. Plant Sci., 2, p. 37 Nazeri, N., Do arbuscular mycorrhizas or heterotrophic soil microbes contribute toward plant acquisition of a pulse of mineral phosphate? (2013) Plant Soil, 373, pp. 699-710 Ryan, M.H., Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and mycorrhizal symbiosis in plant phosphorus acquisition (2012) Plant Cell Environ., 35, pp. 2061-2220 Muler, A.L., Does cluster-root activity of Banksia attenuata (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs? (2014) Oecologia, 174, pp. 23-31 Lambers, H., Teste, F.P., Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient-availability play the same game? (2013) Plant Cell Environ., 36, pp. 1911-2070 Lindsay, W.L., (1979) Chemical Equilibria in Soils, , John Wiley & Sons Celi, L., Barberis, E., Abiotic stabilization of organic phosphorus in the environment (2005) Organic Phosphorus in the Environment, pp. 113-132. , CAB International, B.L. Turner (Ed.) Reich, P.B., The world-wide 'fast-slow' plant economics spectrum: a traits manifesto (2014) J. Ecol., 102, pp. 275-301 Watt, M., Evans, J.R., Proteoid roots. Physiology and development (1999) Plant Physiol., 121, pp. 317-323 Shane, M.W., Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase (2004) Plant Physiol., 135, pp. 549-560 Nagarajah, S., Competitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces (1970) Nature, 228, pp. 83-85 Turner, B.L., Laliberté, E., Soil development and nutrient availability along a two million year coastal dune chronosequence under species-rich Mediterranean shrubland in southwestern Australia (2014) Ecosystems, , (in press) Guerinot, M.L., The ZIP family of metal transporters (2000) Biochim. Biophys. Acta Biomembranes, 1465, pp. 190-198 Hall, J.L., Williams, L.E., Transition metal transporters in plants (2003) J. Exp. Bot., 54, pp. 2601-2613 Kobayashi, T., Nishizawa, N.K., Iron uptake, translocation, and regulation in higher plants (2012) Annu. Rev. Plant Biol., 63, pp. 131-152 Connolly, E.L., Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation (2002) Plant Cell, 14, pp. 1347-1357 Eckhardt, U., Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants (2001) Plant Mol. Biol., 45, pp. 437-448 Bughio, N., Cloning an iron-regulated metal transporter from rice (2002) J. Exp. Bot., 53, pp. 1677-1682 Römheld, V., Schaaf, G., Iron transport in plants: future research in view of a plant nutritionist and a molecular biologist (2004) Soil Sci. Plant Nutr., 50, pp. 1003-1012 Martínez-Cuenca, M.-R., Effects of high levels of zinc and manganese ions on Strategy I responses to iron deficiency in citrus (2013) Plant Soil, 373, pp. 943-953 Venturas, M., Root iron uptake efficiency of Ulmus laevis and U. minor and their distribution in soils of the Iberian Peninsula (2014) Front. Plant Sci., 5. , http://dx.doi.org/10.3389/fpls.2014.00104, Published online March 25, 2014 Conte, S.S., Walker, E.L., Transporters contributing to iron trafficking in plants (2011) Mol. Plant, 4, pp. 464-476 Baxter, I.R., The leaf ionome as a multivariable system to detect a plant's physiological status (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 12081-12086 Cailliatte, R., High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions (2010) Plant Cell, 22, pp. 904-917 Ishimaru, Y., OsNRAMP5, a major player for constitutive iron and manganese uptake in rice (2012) Plant Signal. Behav., 7, pp. 763-766 Ishimaru, Y., Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport (2012) Nat. Commun., 2, p. 286 Wulandari, C., Effect of iron deficiency on root ferric chelate reductase, proton extrusion, biomass production and mineral absorption of citrus root stock orange jasmine (Murraya exotica L.) (2014) J. Plant Nutr., 37, pp. 50-64 Sasaki, A., Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice (2012) Plant Cell, 24, pp. 2155-2167 McBain, J.W., The mechanism of the adsorption ('sorption') of hydrogen by carbon (1909) Philos. Mag. Ser. 6, 18, pp. 916-935 Vitousek, P.M., Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions (2010) Ecol. Appl., 20, pp. 5-15 Veneklaas, E.J., Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake (2003) Plant Soil, 248, pp. 187-197 Han, W.X., Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China (2011) Ecol. Lett., 14, pp. 788-796 Mitchell, P.J., Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia (2008) Oecologia, 158, pp. 385-397 Van der Heijden, M.G.A., Scheublin, T.R., Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning (2007) New Phytol., 174, pp. 244-250 Oliveira, R.S., Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types (2015) New Phytol., , (in press) Roelofs, R.F.R., Exudation of carboxylates in Australian Proteaceae: chemical composition (2001) Plant Cell Environ., 24, pp. 891-904 Zhu, Y., A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions? (2005) Plant Cell Physiol., 46, pp. 892-901