dc.creatorLambers H.
dc.creatorHayes P.E.
dc.creatorLaliberte E.
dc.creatorOliveira R.S.
dc.creatorTurner B.L.
dc.date2015
dc.date2015-06-25T12:52:51Z
dc.date2015-11-26T15:05:16Z
dc.date2015-06-25T12:52:51Z
dc.date2015-11-26T15:05:16Z
dc.date.accessioned2018-03-28T22:16:04Z
dc.date.available2018-03-28T22:16:04Z
dc.identifier
dc.identifierTrends In Plant Science. Elsevier Ltd, v. 20, n. 2, p. 83 - 90, 2015.
dc.identifier13601385
dc.identifier10.1016/j.tplants.2014.10.007
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84922760343&partnerID=40&md5=384ce8ac7d0cbb5c5e0ff16859bd0fbc
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85410
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85410
dc.identifier2-s2.0-84922760343
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257042
dc.descriptionPlants that deploy a phosphorus (P)-mobilising strategy based on the release of carboxylates tend to have high leaf manganese concentrations ([Mn]). This occurs because the carboxylates mobilise not only soil inorganic and organic P, but also a range of micronutrients, including Mn. Concentrations of most other micronutrients increase to a small extent, but Mn accumulates to significant levels, even when plants grow in soil with low concentrations of exchangeable Mn availability. Here, we propose that leaf [Mn] can be used to select for genotypes that are more efficient at acquiring P when soil P availability is low. Likewise, leaf [Mn] can be used to screen for belowground functional traits related to nutrient-acquisition strategies among species in low-P habitats.
dc.description20
dc.description2
dc.description83
dc.description90
dc.descriptionLambers, H., How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae) (2013) Am. J. Bot., 100, pp. 263-288
dc.descriptionTurner, B.L., Soil microbial biomass and the fate of phosphorus during long-term ecosystem development (2013) Plant Soil, 367, pp. 225-234
dc.descriptionPérez-Harguindeguy, N., New handbook for standardised measurement of plant functional traits worldwide (2013) Aust. J. Bot., 61, pp. 167-234
dc.descriptionScholz, R.W., Wellmer, F.-W., Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus? (2013) Global Environ. Change, 23, pp. 11-27
dc.descriptionSimpson, R.J., Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems (2011) Plant Soil, 349, pp. 89-120
dc.descriptionMcHargue, J.S., The role of manganese in plants (1922) J. Am. Chem. Soc., 44, pp. 1592-1598
dc.descriptionBroadley, M., Function of nutrients: micronutrients (2012) Marschner's Mineral Nutrition of Higher Plants, pp. 191-248. , Academic Press, P. Marschner (Ed.)
dc.descriptionStout, P.R., Arnon, D.I., Experimental methods for the study of the role of copper, manganese, and zinc in the nutrition of higher plants (1939) Am. J. Bot., 26, pp. 144-149
dc.descriptionEpstein, E., Bloom, A.J., (2005) Mineral Nutrition of Plants: Principles and Perspectives, , Sinauer
dc.descriptionEl-Jaoual, T., Cox, D.A., Manganese toxicity in plants (1998) J. Plant Nutr., 21, pp. 353-386
dc.descriptionHoriguchi, T., Mechanism of manganese toxicity and tolerance of plants (1988) Soil Sci. Plant Nutr., 34, pp. 65-73
dc.descriptionFoy, C.D., The physiology of metal toxicity in plants (1978) Annu. Rev. Plant Physiol., 29, pp. 511-566
dc.descriptionLambers, H., (2008) Plant Physiological Ecology, , Springer
dc.descriptionKrämer, U., Metal hyperaccumulation in plants (2010) Annu. Rev. Plant Biol., 61, pp. 517-534
dc.descriptionBrooks, R.R., Studies on manganese-accumulating Alyxia species from New Caledonia (1981) Taxon, 30, pp. 420-423
dc.descriptionPittman, J.K., Managing the manganese: molecular mechanisms of manganese transport and homeostasis (2005) New Phytol., 167, pp. 733-742
dc.descriptionDelhaize, E., A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance (2007) Plant J., 51, pp. 198-210
dc.descriptionPeiter, E., A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 8532-8537
dc.descriptionLambers, H., Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits (2006) Ann. Bot., 98, pp. 693-713
dc.descriptionJaffré, T., Accumulation du manganèse par les Protéacées de Nouvelle Calédonie (1979) C.R. Acad. Sci. Paris D, 289, pp. 425-428
dc.descriptionLambers, H., Plant nutrient-acquisition strategies change with soil age (2008) Trends Ecol. Evol., 23, pp. 95-103
dc.descriptionHayes, P., Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence (2014) J. Ecol., 102, pp. 396-410
dc.descriptionShane, M.W., Lambers, H., Cluster roots: a curiosity in context (2005) Plant Soil, 274, pp. 101-125
dc.descriptionGardner, W.K., The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface (1982) Plant Soil, 68, pp. 19-32
dc.descriptionFernando, D.R., Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for 'new' Mn hyperaccumulators and potential applications in taxonomy (2009) Ann. Bot., 103, pp. 931-939
dc.descriptionDenton, M.D., Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus (2007) Plant Cell Environ., 30, pp. 1557-1565
dc.descriptionFernando, D.R., Manganese accumulation in the leaf mesophyll of four tree species: a PIXE/EDAX localization study (2006) New Phytol., 171, pp. 751-758
dc.descriptionRabier, J., Characterization of metal tolerance and accumulation in Grevillea exul var exul (2007) Int. J. Phytoremediation, 9, pp. 419-435
dc.descriptionChild, R., Smith, A.N., Manganese toxicity in Grevillea robusta (1960) Nature, 186, p. 1067
dc.descriptionGardner, W.K., Boundy, K.A., The acquisition of phosphorus by Lupinus albus L. IV. The effect of interplanting wheat and white lupin on the growth and mineralc omposition of the two species (1983) Plant Soil, 70, pp. 391-402
dc.descriptionMorton, J.F., Rooibos tea, Aspalathus linearis, a caffeineless, low-tannin beverage (1983) Econ. Bot., 37, pp. 164-173
dc.descriptionGrierson, P.F., Attiwill, P.M., Chemical characteristics of the proteoid root mat of Banksia integrifolia L (1989) Aust. J. Bot., 37, pp. 137-143
dc.descriptionDinkelaker, B., Distribution and function of proteoid roots and other root clusters (1995) Bot. Acta, 108, pp. 193-200
dc.descriptionShane, M.W., Lambers, H., Manganese accumulation in leaves of Hakea prostrata (Proteaceae) and the significance of cluster roots for micronutrient uptake as dependent on phosphorus supply (2005) Physiol. Plant, 124, pp. 441-450
dc.descriptionMoraghan, J., Iron-manganese relationships in white lupine grown on a calciaquoll (1992) Soil Sci. Soc. Am. J., 56, pp. 471-475
dc.descriptionKorshunova, Y.O., The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range (1999) Plant Mol. Biol., 40, pp. 37-44
dc.descriptionGodo, G.H., Reisenauer, H.M., Plant effects on soil manganese availability (1980) Soil Sci. Soc. Am. J., 44, pp. 993-995
dc.descriptionJauregui, M.A., Reisenauer, H.M., Dissolution of oxides of manganese and iron by root exudate components (1982) Soil Sci. Soc. Am. J., 46, pp. 314-317
dc.descriptionXue, S.G., Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae) (2004) Environ. Pollut., 131, pp. 393-399
dc.descriptionXue, S.G., Manganese uptake and accumulation by two populations of Phytolacca acinosa Roxb. (Phytolaccaceae) (2005) Water Air Soil Pollution, 160, pp. 3-14
dc.descriptionXu, X., Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae) (2006) Plant Soil, 285, pp. 323-331
dc.descriptionLiu, P., Manganese tolerance and accumulation in six Mn hyperaccumulators or accumulators (2010) Plant Soil, 335, pp. 385-395
dc.descriptionMin, Y., Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana (2007) Miner. Eng., 20, pp. 188-190
dc.descriptionGerdemann, J.W., Vesicular-arbuscular mycorrhiza and plant growth (1968) Annu. Rev. Phytopathol., 6, pp. 397-418
dc.descriptionJanos, D.P., Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth (1980) Ecology, 61, pp. 151-162
dc.descriptionBrooks, R.R., Phytomining (1998) Trends Plant Sci., 3, pp. 359-362
dc.descriptionDou, C.M., Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana (2009) Plant Biol., 11, pp. 664-670
dc.descriptionMassicotte, H.B., Anatomical aspects of field ectomycorrhizas on Polygonum viviparum (Polygonaceae) and Kobresia bellardii (Cyperaceae) (1998) Mycorrhiza, 7, pp. 287-292
dc.descriptionReay, P.F., Waugh, C., Mineral-element composition of Lupinus albus and Lupinus angustifolius in relation to manganese accumulation (1981) Plant Soil, 60, pp. 435-444
dc.descriptionPearse, S.J., Carboxylate release of wheat, canola and 11 grain legume species as affected by phosphorus status (2006) Plant Soil, 288, pp. 127-139
dc.descriptionAbrahão, A., Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus (2014) Oecologia, 176, pp. 345-355
dc.descriptionWang, B., Qiu, Y.-L., Phylogenetic distribution and evolution of mycorrhizas in land plants (2006) Mycorrhiza, 16, pp. 299-363
dc.descriptionViani, R.A.G., Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species (2014) Perspect. Plant Ecol. Evol. Syst., 16, pp. 64-74
dc.descriptionSmith, S.E., Read, D.J., (2008) Mycorrhizal Symbiosis, , Academic Press and Elsevier
dc.descriptionHill, J., Does manganese play a role in the distribution of the eucalypts? (2001) Aust. J. Bot., 49, pp. 1-8
dc.descriptionGrigg, A.M., Water relations and mineral nutrition of closely related woody plant species on desert dunes and interdunes (2008) Aust. J. Bot., 56, pp. 27-43
dc.descriptionMullette, K.J., Insoluble phosphorus usage by Eucalyptus (1974) Plant Soil, 41, pp. 199-205
dc.descriptionBidwell, S.D., Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia (2002) Funct. Plant Biol., 29, pp. 899-905
dc.descriptionFernando, D.R., In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX (2006) Plant Cell Environ., 29, pp. 1012-1020
dc.descriptionFernando, D.R., Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae) (2007) Plant Soil, 293, pp. 145-152
dc.descriptionFernando, D.R., Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis (2008) New Phytol., 177, pp. 178-185
dc.descriptionMizuno, T., Age-dependent manganese hyperaccumulation in Chengiopanax sciadophylloides (Araliaceae) (2008) J. Plant Nutr., 31, pp. 1811-1819
dc.descriptionMizuno, T., Continual pH lowering and manganese dioxide solubilization in the rhizosphere of the Mn-hyperaccumulator plant Chengiopanax sciadophylloides (2006) Soil Sci. Plant Nutr., 52, pp. 726-733
dc.descriptionMemon, A.R., Yatazawa, M., Nature of manganese complexes in manganese accumulator plant - Acanthopanax sciadophylloides (1984) J. Plant Nutr., 7, pp. 961-974
dc.descriptionMemon, A.R., Absorption and accumulation of iron, manganese and copper in plants in the temperate forest of central Japan (1979) Soil Sci. Plant Nutr., 25, pp. 611-620
dc.descriptionMizuno, T., Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. et Sav. and its correlation with calcium accumulation (2013) Soil Sci. Plant Nutr., 59, pp. 591-602
dc.descriptionMizuno, T., Cloning of ZIP family metal transporter genes from the manganese hyperaccumulator plant Chengiopanax sciadophylloides, and its metal transport and resistance abilities in yeast (2008) Soil Sci. Plant Nutr., 54, pp. 86-94
dc.descriptionYang, S.X., Manganese uptake and accumulation in a woody hyperaccumulator, Schima superba (2008) Plant Soil Environ., 54, pp. 441-446
dc.descriptionPedas, P., Elevated phosphorus impedes manganese acquisition by barley plants (2011) Front. Plant Sci., 2, p. 37
dc.descriptionNazeri, N., Do arbuscular mycorrhizas or heterotrophic soil microbes contribute toward plant acquisition of a pulse of mineral phosphate? (2013) Plant Soil, 373, pp. 699-710
dc.descriptionRyan, M.H., Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and mycorrhizal symbiosis in plant phosphorus acquisition (2012) Plant Cell Environ., 35, pp. 2061-2220
dc.descriptionMuler, A.L., Does cluster-root activity of Banksia attenuata (Proteaceae) benefit phosphorus or micronutrient uptake and growth of neighbouring shrubs? (2014) Oecologia, 174, pp. 23-31
dc.descriptionLambers, H., Teste, F.P., Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient-availability play the same game? (2013) Plant Cell Environ., 36, pp. 1911-2070
dc.descriptionLindsay, W.L., (1979) Chemical Equilibria in Soils, , John Wiley & Sons
dc.descriptionCeli, L., Barberis, E., Abiotic stabilization of organic phosphorus in the environment (2005) Organic Phosphorus in the Environment, pp. 113-132. , CAB International, B.L. Turner (Ed.)
dc.descriptionReich, P.B., The world-wide 'fast-slow' plant economics spectrum: a traits manifesto (2014) J. Ecol., 102, pp. 275-301
dc.descriptionWatt, M., Evans, J.R., Proteoid roots. Physiology and development (1999) Plant Physiol., 121, pp. 317-323
dc.descriptionShane, M.W., Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase (2004) Plant Physiol., 135, pp. 549-560
dc.descriptionNagarajah, S., Competitive adsorption of phosphate with polygalacturonate and other organic anions on kaolinite and oxide surfaces (1970) Nature, 228, pp. 83-85
dc.descriptionTurner, B.L., Laliberté, E., Soil development and nutrient availability along a two million year coastal dune chronosequence under species-rich Mediterranean shrubland in southwestern Australia (2014) Ecosystems, , (in press)
dc.descriptionGuerinot, M.L., The ZIP family of metal transporters (2000) Biochim. Biophys. Acta Biomembranes, 1465, pp. 190-198
dc.descriptionHall, J.L., Williams, L.E., Transition metal transporters in plants (2003) J. Exp. Bot., 54, pp. 2601-2613
dc.descriptionKobayashi, T., Nishizawa, N.K., Iron uptake, translocation, and regulation in higher plants (2012) Annu. Rev. Plant Biol., 63, pp. 131-152
dc.descriptionConnolly, E.L., Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation (2002) Plant Cell, 14, pp. 1347-1357
dc.descriptionEckhardt, U., Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants (2001) Plant Mol. Biol., 45, pp. 437-448
dc.descriptionBughio, N., Cloning an iron-regulated metal transporter from rice (2002) J. Exp. Bot., 53, pp. 1677-1682
dc.descriptionRömheld, V., Schaaf, G., Iron transport in plants: future research in view of a plant nutritionist and a molecular biologist (2004) Soil Sci. Plant Nutr., 50, pp. 1003-1012
dc.descriptionMartínez-Cuenca, M.-R., Effects of high levels of zinc and manganese ions on Strategy I responses to iron deficiency in citrus (2013) Plant Soil, 373, pp. 943-953
dc.descriptionVenturas, M., Root iron uptake efficiency of Ulmus laevis and U. minor and their distribution in soils of the Iberian Peninsula (2014) Front. Plant Sci., 5. , http://dx.doi.org/10.3389/fpls.2014.00104, Published online March 25, 2014
dc.descriptionConte, S.S., Walker, E.L., Transporters contributing to iron trafficking in plants (2011) Mol. Plant, 4, pp. 464-476
dc.descriptionBaxter, I.R., The leaf ionome as a multivariable system to detect a plant's physiological status (2008) Proc. Natl. Acad. Sci. U.S.A., 105, pp. 12081-12086
dc.descriptionCailliatte, R., High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions (2010) Plant Cell, 22, pp. 904-917
dc.descriptionIshimaru, Y., OsNRAMP5, a major player for constitutive iron and manganese uptake in rice (2012) Plant Signal. Behav., 7, pp. 763-766
dc.descriptionIshimaru, Y., Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport (2012) Nat. Commun., 2, p. 286
dc.descriptionWulandari, C., Effect of iron deficiency on root ferric chelate reductase, proton extrusion, biomass production and mineral absorption of citrus root stock orange jasmine (Murraya exotica L.) (2014) J. Plant Nutr., 37, pp. 50-64
dc.descriptionSasaki, A., Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice (2012) Plant Cell, 24, pp. 2155-2167
dc.descriptionMcBain, J.W., The mechanism of the adsorption ('sorption') of hydrogen by carbon (1909) Philos. Mag. Ser. 6, 18, pp. 916-935
dc.descriptionVitousek, P.M., Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions (2010) Ecol. Appl., 20, pp. 5-15
dc.descriptionVeneklaas, E.J., Chickpea and white lupin rhizosphere carboxylates vary with soil properties and enhance phosphorus uptake (2003) Plant Soil, 248, pp. 187-197
dc.descriptionHan, W.X., Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China (2011) Ecol. Lett., 14, pp. 788-796
dc.descriptionMitchell, P.J., Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia (2008) Oecologia, 158, pp. 385-397
dc.descriptionVan der Heijden, M.G.A., Scheublin, T.R., Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning (2007) New Phytol., 174, pp. 244-250
dc.descriptionOliveira, R.S., Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types (2015) New Phytol., , (in press)
dc.descriptionRoelofs, R.F.R., Exudation of carboxylates in Australian Proteaceae: chemical composition (2001) Plant Cell Environ., 24, pp. 891-904
dc.descriptionZhu, Y., A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions? (2005) Plant Cell Physiol., 46, pp. 892-901
dc.languageen
dc.publisherElsevier Ltd
dc.relationTrends in Plant Science
dc.rightsfechado
dc.sourceScopus
dc.titleLeaf Manganese Accumulation And Phosphorus-acquisition Efficiency
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución