Artículos de revistas
The Bivariate Sinh-elliptical Distribution With Applications To Birnbaum-saunders Distribution And Associated Regression And Measurement Error Models
Registro en:
Computational Statistics And Data Analysis. Elsevier, v. 80, n. , p. 1 - 16, 2014.
1679473
10.1016/j.csda.2014.06.001
2-s2.0-84903160794
Autor
Vilca F.
Balakrishnan N.
Zeller C.B.
Institución
Resumen
The bivariate Sinh-Elliptical (BSE) distribution is a generalization of the well-known Rieck's (1989) Sinh-Normal distribution that is quite useful in Birnbaum-Saunders (BS) regression model. The main aim of this paper is to define the BSE distribution and discuss some of its properties, such as marginal and conditional distributions and moments. In addition, the asymptotic properties of method of moments estimators are studied, extending some existing theoretical results in the literature. These results are obtained by using some known properties of the bivariate elliptical distribution. This development can be viewed as a follow-up to the recent work on bivariate Birnbaum-Saunders distribution by Kundu et al. (2010) towards some applications in the regression setup. The measurement error models are also introduced as part of the application of the results developed here. Finally, numerical examples using both simulated and real data are analyzed, illustrating the usefulness of the proposed methodology. © 2014 Published by Elsevier B.V. 80
1 16 NSERC; Natural Sciences and Engineering Research Council of Canada Arellano-Valle, R.B., Bolfarine, H., On some characterizations of the t-distribution (2005) Statist. Probab. Lett., 25, pp. 79-85 Arellano-Valle, R.B., Bolfarine, H., Vilca-Labra, F., Ultrastructural elliptical models (1996) Canadian Journal of Statistics, 24 (2), pp. 207-216 Balakrishnan, N., Lai, C.-D., (2009) Continuous Bivariate Distributions, , second ed. Springer-Verlag New York Barros, M., Paula, G.A., Leiva, V., A new class of survival regression models with heavy-tailed errors: Robustness and diagnostics (2008) Lifetime Data Anal., 14, pp. 316-332 Birnbaum, Z.W., Saunders, S.C., A new family of life distributions (1969) J. Appl. Probab., 6, pp. 637-652 Birnbaum, Z.W., Saunders, S.C., Estimation for a family of life distributions with applications to fatigue (1969) J. Appl. Probab., 6, pp. 328-347 Cambanis, S., Huang, S., Simons, G., On the theory of elliptically contoured distributions (1981) J. Multivariate Anal., 11, pp. 368-385 Cheng, C., Van Ness, J., On the unreplicated ultrastructural model (1991) Biometrika, 78, pp. 442-445 Cordeiro, G.M., Lemonte, A.J., The β-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling (2011) Comput. Statist. Data Anal., 55, pp. 1445-1461 Díaz-García, J.A., Domínguez Molina, J.R., A new family of life distributions for dependent data: Estimation (2007) Comput. Statist. Data Anal., 51, pp. 5927-5939 Fang, K.T., Kotz, S., Ng, K.W., (1990) Symmetric Multivariate and Related Distributions, , Chapman & Hall London Fuller, W.A., (1987) Measurement Error Models, , John Wiley & Sons New York Galea, M., Leiva-Sanchez, V., Paula, G.A., Influence diagnostics in log-Birnbaum-Saunders regression models (2004) Journal of Applied Statistics, 31 (9), pp. 1049-1064. , DOI 10.1080/0266476042000280409 James, A.T., Distributions of matrix variate and latent roots derived from normal sample (1964) Ann. Math. Statist., 35, pp. 475-501 Johnson, N.L., Systems of frequency curves generated by methods of translation (1949) Biometrika, 36, pp. 149-176 Jolicoeur, P., Mosimann, J.E., Size and shape variation in the painted turtle: A principal component analysis (1960) Growth, 24, pp. 339-354 Kundu, D., Bivariate Sinh-Normal distribution and a related model (2014) Braz. J. Probab. Stat., , online Kundu, D., Balakrishnan, N., Jamalizadeh, A., Bivariate Birnbaum-Saunders distribution and associated inference (2010) J. Multivariate Anal., 101, pp. 113-125 Kundu, D., Balakrishnan, N., Jamalizadeh, A., Generalized multivariate Birnbaum-Saunders distributions and related inferential issues (2013) J. Multivariate Anal., 116, pp. 230-244 Lange, K.L., Little, J.A., Taylor, M.G.J., Robust statistical modeling using the t distribution (1989) J. Appl. Stat., 84, pp. 881-896 Lange, K., Sinsheimer, J.S., Normal/independent distributions and their applications in robust regression (1993) J. Comput. Graph. Statist., 2, pp. 175-198 Leiva, V., Vilca, F., Balakrishnan, N., Sanhueza, A., A skewed Sinh-Normal distribution and its properties and application to air pollution (2010) Comm. Statist. Theory Methods, 39, pp. 426-443 Lemonte, A.J., Cordeiro, G.M., Improved maximum likelihood estimation in Birnbaum-Saunders nonlinear regressions (2009) Comput. Statist. Data Anal., 53, pp. 4441-4452 Muirhead, R.J., (1982) Aspects of Multivariate Statistical Theory, , John Wiley & Sons New York Pinheiro, J.C., Liu, C.H., Wu, Y.N., Efficient algorithms for robust estimation in linear mixed-effects models using a multivariate t-distribution (2001) J. Comput. Graph. Statist., 10, pp. 249-276 Rieck, J.R., (1989) Statistical Analysis for the Birnbaum-Saunders Fatigue Life Distribution, , (Unpublished Ph.D. thesis) Department of Mathematical Sciences, Clemson University USA Rieck, J.R., Nedelman, J.R., A log-linear model for the Birnbaum-Saunders distribution (1991) Technometrics, 33, pp. 51-60 Severini, T.A., Likelihood functions for inference in the presence of a nuisance parameter (1998) Biometrika, 85, pp. 507-522 Vilca-Labra, F., Arellano-Valle, R.B., Bolfarine, H., Elliptical functional models (1998) Journal of Multivariate Analysis, 65 (1), pp. 36-57. , DOI 10.1006/jmva.1997.1726, PII S0047259X97917267 Vilca, L.F., Zeller, B.C., Cordeiro, G.M., (2013) The Sinh-Normal/Independent Nonlinear Regression Model, , (submitted for publication) Xie, F.C., Wei, B.C., Lin, J.G., Case-deletion influence measures for the data from multivariate t distributions (1997) J. Appl. Stat., 34, pp. 907-921