dc.creatorVilca F.
dc.creatorBalakrishnan N.
dc.creatorZeller C.B.
dc.date2014
dc.date2015-06-25T18:02:36Z
dc.date2015-11-26T15:04:44Z
dc.date2015-06-25T18:02:36Z
dc.date2015-11-26T15:04:44Z
dc.date.accessioned2018-03-28T22:15:34Z
dc.date.available2018-03-28T22:15:34Z
dc.identifier
dc.identifierComputational Statistics And Data Analysis. Elsevier, v. 80, n. , p. 1 - 16, 2014.
dc.identifier1679473
dc.identifier10.1016/j.csda.2014.06.001
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84903160794&partnerID=40&md5=925723c35975dcb8df8a3a9356b57f7d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87867
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87867
dc.identifier2-s2.0-84903160794
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256923
dc.descriptionThe bivariate Sinh-Elliptical (BSE) distribution is a generalization of the well-known Rieck's (1989) Sinh-Normal distribution that is quite useful in Birnbaum-Saunders (BS) regression model. The main aim of this paper is to define the BSE distribution and discuss some of its properties, such as marginal and conditional distributions and moments. In addition, the asymptotic properties of method of moments estimators are studied, extending some existing theoretical results in the literature. These results are obtained by using some known properties of the bivariate elliptical distribution. This development can be viewed as a follow-up to the recent work on bivariate Birnbaum-Saunders distribution by Kundu et al. (2010) towards some applications in the regression setup. The measurement error models are also introduced as part of the application of the results developed here. Finally, numerical examples using both simulated and real data are analyzed, illustrating the usefulness of the proposed methodology. © 2014 Published by Elsevier B.V.
dc.description80
dc.description
dc.description1
dc.description16
dc.descriptionNSERC; Natural Sciences and Engineering Research Council of Canada
dc.descriptionArellano-Valle, R.B., Bolfarine, H., On some characterizations of the t-distribution (2005) Statist. Probab. Lett., 25, pp. 79-85
dc.descriptionArellano-Valle, R.B., Bolfarine, H., Vilca-Labra, F., Ultrastructural elliptical models (1996) Canadian Journal of Statistics, 24 (2), pp. 207-216
dc.descriptionBalakrishnan, N., Lai, C.-D., (2009) Continuous Bivariate Distributions, , second ed. Springer-Verlag New York
dc.descriptionBarros, M., Paula, G.A., Leiva, V., A new class of survival regression models with heavy-tailed errors: Robustness and diagnostics (2008) Lifetime Data Anal., 14, pp. 316-332
dc.descriptionBirnbaum, Z.W., Saunders, S.C., A new family of life distributions (1969) J. Appl. Probab., 6, pp. 637-652
dc.descriptionBirnbaum, Z.W., Saunders, S.C., Estimation for a family of life distributions with applications to fatigue (1969) J. Appl. Probab., 6, pp. 328-347
dc.descriptionCambanis, S., Huang, S., Simons, G., On the theory of elliptically contoured distributions (1981) J. Multivariate Anal., 11, pp. 368-385
dc.descriptionCheng, C., Van Ness, J., On the unreplicated ultrastructural model (1991) Biometrika, 78, pp. 442-445
dc.descriptionCordeiro, G.M., Lemonte, A.J., The β-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling (2011) Comput. Statist. Data Anal., 55, pp. 1445-1461
dc.descriptionDíaz-García, J.A., Domínguez Molina, J.R., A new family of life distributions for dependent data: Estimation (2007) Comput. Statist. Data Anal., 51, pp. 5927-5939
dc.descriptionFang, K.T., Kotz, S., Ng, K.W., (1990) Symmetric Multivariate and Related Distributions, , Chapman & Hall London
dc.descriptionFuller, W.A., (1987) Measurement Error Models, , John Wiley & Sons New York
dc.descriptionGalea, M., Leiva-Sanchez, V., Paula, G.A., Influence diagnostics in log-Birnbaum-Saunders regression models (2004) Journal of Applied Statistics, 31 (9), pp. 1049-1064. , DOI 10.1080/0266476042000280409
dc.descriptionJames, A.T., Distributions of matrix variate and latent roots derived from normal sample (1964) Ann. Math. Statist., 35, pp. 475-501
dc.descriptionJohnson, N.L., Systems of frequency curves generated by methods of translation (1949) Biometrika, 36, pp. 149-176
dc.descriptionJolicoeur, P., Mosimann, J.E., Size and shape variation in the painted turtle: A principal component analysis (1960) Growth, 24, pp. 339-354
dc.descriptionKundu, D., Bivariate Sinh-Normal distribution and a related model (2014) Braz. J. Probab. Stat., , online
dc.descriptionKundu, D., Balakrishnan, N., Jamalizadeh, A., Bivariate Birnbaum-Saunders distribution and associated inference (2010) J. Multivariate Anal., 101, pp. 113-125
dc.descriptionKundu, D., Balakrishnan, N., Jamalizadeh, A., Generalized multivariate Birnbaum-Saunders distributions and related inferential issues (2013) J. Multivariate Anal., 116, pp. 230-244
dc.descriptionLange, K.L., Little, J.A., Taylor, M.G.J., Robust statistical modeling using the t distribution (1989) J. Appl. Stat., 84, pp. 881-896
dc.descriptionLange, K., Sinsheimer, J.S., Normal/independent distributions and their applications in robust regression (1993) J. Comput. Graph. Statist., 2, pp. 175-198
dc.descriptionLeiva, V., Vilca, F., Balakrishnan, N., Sanhueza, A., A skewed Sinh-Normal distribution and its properties and application to air pollution (2010) Comm. Statist. Theory Methods, 39, pp. 426-443
dc.descriptionLemonte, A.J., Cordeiro, G.M., Improved maximum likelihood estimation in Birnbaum-Saunders nonlinear regressions (2009) Comput. Statist. Data Anal., 53, pp. 4441-4452
dc.descriptionMuirhead, R.J., (1982) Aspects of Multivariate Statistical Theory, , John Wiley & Sons New York
dc.descriptionPinheiro, J.C., Liu, C.H., Wu, Y.N., Efficient algorithms for robust estimation in linear mixed-effects models using a multivariate t-distribution (2001) J. Comput. Graph. Statist., 10, pp. 249-276
dc.descriptionRieck, J.R., (1989) Statistical Analysis for the Birnbaum-Saunders Fatigue Life Distribution, , (Unpublished Ph.D. thesis) Department of Mathematical Sciences, Clemson University USA
dc.descriptionRieck, J.R., Nedelman, J.R., A log-linear model for the Birnbaum-Saunders distribution (1991) Technometrics, 33, pp. 51-60
dc.descriptionSeverini, T.A., Likelihood functions for inference in the presence of a nuisance parameter (1998) Biometrika, 85, pp. 507-522
dc.descriptionVilca-Labra, F., Arellano-Valle, R.B., Bolfarine, H., Elliptical functional models (1998) Journal of Multivariate Analysis, 65 (1), pp. 36-57. , DOI 10.1006/jmva.1997.1726, PII S0047259X97917267
dc.descriptionVilca, L.F., Zeller, B.C., Cordeiro, G.M., (2013) The Sinh-Normal/Independent Nonlinear Regression Model, , (submitted for publication)
dc.descriptionXie, F.C., Wei, B.C., Lin, J.G., Case-deletion influence measures for the data from multivariate t distributions (1997) J. Appl. Stat., 34, pp. 907-921
dc.languageen
dc.publisherElsevier
dc.relationComputational Statistics and Data Analysis
dc.rightsfechado
dc.sourceScopus
dc.titleThe Bivariate Sinh-elliptical Distribution With Applications To Birnbaum-saunders Distribution And Associated Regression And Measurement Error Models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución