Artículos de revistas
Influence Of Processing And Content Of Vinyl Acetate On The Properties Of Eva/organophilic Montmorillonite Nanocomposites [influência Das Condições De Mistura E Dos Teores De Acetato De Vinila E De Argila Nas Propriedades De Eva/montmorilonita Organofílica]
Registro en:
Polimeros. Associacao Brasileira De Polimeros, v. 24, n. 5, p. 579 - 586, 2014.
1041428
10.1590/0104-1428.1598
2-s2.0-84908689868
Autor
De Queiroz D.D.
Souza P.M.S.
Bertucci J.E.D.S.
Vieira A.D.F.M.
Morales A.R.
Sarantopoulos C.I.G.D.L.
Institución
Resumen
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) The copolymer Ethylene Vinyl Acetate (EVA) is a polyolefin used mainly in packaging films, where its flexibility, toughness, elasticity and transparency are desirable attributes. The mechanical, thermal and barrier properties of EVA can be improved by the incorporation of inorganic fillers. Its polarity varies according to the content of Vinyl Acetate, which allows for nanocomposites to be obtained with organically modified clay, with no need to add compatibilizing agents. In this work nanocomposites of EVA and commercial organophilic montmorillonite were prepared by melt intercalation in a torque rheometer with rotors roller type, at 150°C for 10 minutes, monitoring the torque versus time. The concentration of Vinyl Acetate (19% and 28%), clay content (2% to 5%) and the rotors rotation (60 rpm to 100 rpm) were varied in order to investigate their influence on the characteristics of the nanocomposites. The clay structure, thermal stability, mechanical and barrier properties of the nanocomposites were evaluated by X-ray diffraction, thermal analysis, tensile testing, oxygen and water vapor transmission rates. Based on the permeability data, Nielsen's model was applied to assess the degree of clay exfoliation. The main results obtained from the factorial design are: (a) increasing the polarity of EVA led to an increase in the permeability to oxygen and water vapor of the material, (b) the clay content did not change the clay structure or the thermal stability of the nanocomposites, (c) increasing the concentration of clay increased the elastic modulus, decreased the elongation at break and significantly reduced the coefficient of permeability for oxygen and water vapor, (d) the rotation factor did not result in significant changes in any of the evaluated responses. 24 5 579 586 CNPq; Conselho Nacional de Desenvolvimento Científico e Tecnológico Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Melo, T.J.A., Neves, G.A., Araújo, E.M., Araújo, W.D., Brasileiro, M.I., Rodrigues, A.W., (2007) Polímeros, 17, p. 219. , http://dx.doi.org/10.1590/S0104-14282007000300011 Guimarães, T.R., Morales, A.R., Paiva, L.B., (2006) Polímeros, 16, p. 136. , http://dx.doi.org/10.1590/S0104-14282006000200014 Gorrassi, G., Tortora, M., Vittoria, V., Kaempferb, D., Mülhaupt, R., (2003) Polymer (Guildf.), 44, p. 3679. , http://dx.doi.org/10.1016/S0032-3861(03)00284-2 Krishnamachari, P., Zhang, J., Lou, J., Yan, J., Uitenham, L., (2009) Int. J. Polym. Anal. Charact., 14, p. 336. , http://dx.doi.org/10.1080/10236660902871843 Okamoto, M., Biodegradable polymer/layered silicate nanocomposites: A review (2005) Handbook of Biodegradable Polymeric Materials and Their Applications, , cap. 8, Surya Mallapragada and Balaji Narasimhan (eds.), American Scientific Publishers, Valencia Peacock, A.J., (2000) Handbook of Polyethylene: Structures, Properties and Applications, , Marcel Dekker Inc., New York Gianelli, W., Camino, G., Dintcheva, N.T., Verso, S.L., La Mantia, F.P., (2004) Macromol. Mater. Eng., 289, p. 238. , http://dx.doi.org/10.1002/mame.200300267 La Mantia, F.P., Dintcheva, N.T., (2006) Polym. Test., 25, p. 701. , http://dx.doi.org/10.1016/j.polymertesting.2006.03.003 Nawani, P., Burger, C., Rong, L., Chu, B., Hsiao, B.S., Tsou, A.H., Weng, W., (2010) Polymer., 51, p. 5255. , http://dx.doi.org/10.1016/j.polymer.2010.08.048 Beltrán, M.I., Benavente, V., Marchante, V., Marcilla, A., (2013) Appl. Clay Sci., 83-84, p. 153. , http://dx.doi.org/10.1016/j.clay.2013.08.028 Morales, A.R., Cruz, C.V.M., Peres, L., Ito, E.N., (2010) Polímeros, 20, p. 39. , http://dx.doi.org/10.1590/S0104-14282010005000004 Nielsen, L.E., (1967) J. Macromol. Sci. Chem. A1, 5, p. 929 Utracki, A., (2004) Clay-Containing Polymeric Nanocomposites, , Rapra Technology, Shrewsbury Choudalakis, G., Gotsis, A.D., (2009) Eur. Polym. J., 45, p. 967. , http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027 Santos, P.S., (1989) Ciência e Tecnologia de Argilas, , Ed. Edgard Blucher, São Paulo Mandalia, T., Bergaya, F.-J., (2006) Phys. Chem. Solids., 67, p. 836. , http://dx.doi.org/10.1016/j.jpcs.2005.12.007 Shafiee, M., Ramazani, A., (2008) Macromol. Symp., 274, p. 1. , http://dx.doi.org/10.1002/masy.200851401 Marini, J., Branciforti, M.C., Lotti, C., (2010) Polym. Adv. Technol., 21, p. 408 Zanetti, M., (2001) Polymer., 42, p. 4501. , http://dx.doi.org/10.1016/S0032-3861(00)00775-8 Ardhyananta, H., Ismail, H., Takeichi, T., (2007) J. Reinf. Plast. Compos., 26, p. 789. , http://dx.doi.org/10.1177/0731684407076722 Chaudhray, D.S., Prasad, R., Gupta, R.K., Bhattacharya, S.N., (2005) Thermochim. Acta., 433, p. 187. , http://dx.doi.org/10.1016/j.tca.2005.02.031 Chaudhary, D.S., Prasad, R., Gupta, R., Bhattacharya, S.N., (2005) Polym. Eng. Sci., 45, p. 889. , http://dx.doi.org/10.1002/pen.20349 La Mantia, F.P., Verso, S.L., Dintcheva, N.T., (2002) Macromol. Mater. Eng., 287, p. 909. , http://dx.doi.org/10.1002/mame.200290019 Alexandre, B., Langevin, D., Médéric, P., Aubry, T., Couderc, H., Nguyen, Q.T., Saiter, A., Marais, S.-J., (2009) Membr. Sci., 328, p. 186. , http://dx.doi.org/10.1016/j.memsci.2008.12.004 Nazarenko, S., Meneghetti, P., Julmon, P., Olson, B.G., Qutubuddin, S., (2007) Polym. Sci. Pol. Phys., 45, p. 1733. , http://dx.doi.org/10.1002/polb.21181 Ploehn, H.J., Liu, C., (2006) Ind. Eng. Chem. Res., 45, p. 7025. , http://dx.doi.org/10.1021/ie051392r