dc.creatorDe Queiroz D.D.
dc.creatorSouza P.M.S.
dc.creatorBertucci J.E.D.S.
dc.creatorVieira A.D.F.M.
dc.creatorMorales A.R.
dc.creatorSarantopoulos C.I.G.D.L.
dc.date2014
dc.date2015-06-25T18:02:17Z
dc.date2015-11-26T15:04:13Z
dc.date2015-06-25T18:02:17Z
dc.date2015-11-26T15:04:13Z
dc.date.accessioned2018-03-28T22:15:02Z
dc.date.available2018-03-28T22:15:02Z
dc.identifier
dc.identifierPolimeros. Associacao Brasileira De Polimeros, v. 24, n. 5, p. 579 - 586, 2014.
dc.identifier1041428
dc.identifier10.1590/0104-1428.1598
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84908689868&partnerID=40&md5=6c09fd5e7cdf3c86470cc14ed14e832a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87779
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87779
dc.identifier2-s2.0-84908689868
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256793
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionThe copolymer Ethylene Vinyl Acetate (EVA) is a polyolefin used mainly in packaging films, where its flexibility, toughness, elasticity and transparency are desirable attributes. The mechanical, thermal and barrier properties of EVA can be improved by the incorporation of inorganic fillers. Its polarity varies according to the content of Vinyl Acetate, which allows for nanocomposites to be obtained with organically modified clay, with no need to add compatibilizing agents. In this work nanocomposites of EVA and commercial organophilic montmorillonite were prepared by melt intercalation in a torque rheometer with rotors roller type, at 150°C for 10 minutes, monitoring the torque versus time. The concentration of Vinyl Acetate (19% and 28%), clay content (2% to 5%) and the rotors rotation (60 rpm to 100 rpm) were varied in order to investigate their influence on the characteristics of the nanocomposites. The clay structure, thermal stability, mechanical and barrier properties of the nanocomposites were evaluated by X-ray diffraction, thermal analysis, tensile testing, oxygen and water vapor transmission rates. Based on the permeability data, Nielsen's model was applied to assess the degree of clay exfoliation. The main results obtained from the factorial design are: (a) increasing the polarity of EVA led to an increase in the permeability to oxygen and water vapor of the material, (b) the clay content did not change the clay structure or the thermal stability of the nanocomposites, (c) increasing the concentration of clay increased the elastic modulus, decreased the elongation at break and significantly reduced the coefficient of permeability for oxygen and water vapor, (d) the rotation factor did not result in significant changes in any of the evaluated responses.
dc.description24
dc.description5
dc.description579
dc.description586
dc.descriptionCNPq; Conselho Nacional de Desenvolvimento Científico e Tecnológico
dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.descriptionMelo, T.J.A., Neves, G.A., Araújo, E.M., Araújo, W.D., Brasileiro, M.I., Rodrigues, A.W., (2007) Polímeros, 17, p. 219. , http://dx.doi.org/10.1590/S0104-14282007000300011
dc.descriptionGuimarães, T.R., Morales, A.R., Paiva, L.B., (2006) Polímeros, 16, p. 136. , http://dx.doi.org/10.1590/S0104-14282006000200014
dc.descriptionGorrassi, G., Tortora, M., Vittoria, V., Kaempferb, D., Mülhaupt, R., (2003) Polymer (Guildf.), 44, p. 3679. , http://dx.doi.org/10.1016/S0032-3861(03)00284-2
dc.descriptionKrishnamachari, P., Zhang, J., Lou, J., Yan, J., Uitenham, L., (2009) Int. J. Polym. Anal. Charact., 14, p. 336. , http://dx.doi.org/10.1080/10236660902871843
dc.descriptionOkamoto, M., Biodegradable polymer/layered silicate nanocomposites: A review (2005) Handbook of Biodegradable Polymeric Materials and Their Applications, , cap. 8, Surya Mallapragada and Balaji Narasimhan (eds.), American Scientific Publishers, Valencia
dc.descriptionPeacock, A.J., (2000) Handbook of Polyethylene: Structures, Properties and Applications, , Marcel Dekker Inc., New York
dc.descriptionGianelli, W., Camino, G., Dintcheva, N.T., Verso, S.L., La Mantia, F.P., (2004) Macromol. Mater. Eng., 289, p. 238. , http://dx.doi.org/10.1002/mame.200300267
dc.descriptionLa Mantia, F.P., Dintcheva, N.T., (2006) Polym. Test., 25, p. 701. , http://dx.doi.org/10.1016/j.polymertesting.2006.03.003
dc.descriptionNawani, P., Burger, C., Rong, L., Chu, B., Hsiao, B.S., Tsou, A.H., Weng, W., (2010) Polymer., 51, p. 5255. , http://dx.doi.org/10.1016/j.polymer.2010.08.048
dc.descriptionBeltrán, M.I., Benavente, V., Marchante, V., Marcilla, A., (2013) Appl. Clay Sci., 83-84, p. 153. , http://dx.doi.org/10.1016/j.clay.2013.08.028
dc.descriptionMorales, A.R., Cruz, C.V.M., Peres, L., Ito, E.N., (2010) Polímeros, 20, p. 39. , http://dx.doi.org/10.1590/S0104-14282010005000004
dc.descriptionNielsen, L.E., (1967) J. Macromol. Sci. Chem. A1, 5, p. 929
dc.descriptionUtracki, A., (2004) Clay-Containing Polymeric Nanocomposites, , Rapra Technology, Shrewsbury
dc.descriptionChoudalakis, G., Gotsis, A.D., (2009) Eur. Polym. J., 45, p. 967. , http://dx.doi.org/10.1016/j.eurpolymj.2009.01.027
dc.descriptionSantos, P.S., (1989) Ciência e Tecnologia de Argilas, , Ed. Edgard Blucher, São Paulo
dc.descriptionMandalia, T., Bergaya, F.-J., (2006) Phys. Chem. Solids., 67, p. 836. , http://dx.doi.org/10.1016/j.jpcs.2005.12.007
dc.descriptionShafiee, M., Ramazani, A., (2008) Macromol. Symp., 274, p. 1. , http://dx.doi.org/10.1002/masy.200851401
dc.descriptionMarini, J., Branciforti, M.C., Lotti, C., (2010) Polym. Adv. Technol., 21, p. 408
dc.descriptionZanetti, M., (2001) Polymer., 42, p. 4501. , http://dx.doi.org/10.1016/S0032-3861(00)00775-8
dc.descriptionArdhyananta, H., Ismail, H., Takeichi, T., (2007) J. Reinf. Plast. Compos., 26, p. 789. , http://dx.doi.org/10.1177/0731684407076722
dc.descriptionChaudhray, D.S., Prasad, R., Gupta, R.K., Bhattacharya, S.N., (2005) Thermochim. Acta., 433, p. 187. , http://dx.doi.org/10.1016/j.tca.2005.02.031
dc.descriptionChaudhary, D.S., Prasad, R., Gupta, R., Bhattacharya, S.N., (2005) Polym. Eng. Sci., 45, p. 889. , http://dx.doi.org/10.1002/pen.20349
dc.descriptionLa Mantia, F.P., Verso, S.L., Dintcheva, N.T., (2002) Macromol. Mater. Eng., 287, p. 909. , http://dx.doi.org/10.1002/mame.200290019
dc.descriptionAlexandre, B., Langevin, D., Médéric, P., Aubry, T., Couderc, H., Nguyen, Q.T., Saiter, A., Marais, S.-J., (2009) Membr. Sci., 328, p. 186. , http://dx.doi.org/10.1016/j.memsci.2008.12.004
dc.descriptionNazarenko, S., Meneghetti, P., Julmon, P., Olson, B.G., Qutubuddin, S., (2007) Polym. Sci. Pol. Phys., 45, p. 1733. , http://dx.doi.org/10.1002/polb.21181
dc.descriptionPloehn, H.J., Liu, C., (2006) Ind. Eng. Chem. Res., 45, p. 7025. , http://dx.doi.org/10.1021/ie051392r
dc.languagept
dc.publisherAssociacao Brasileira de Polimeros
dc.relationPolimeros
dc.rightsaberto
dc.sourceScopus
dc.titleInfluence Of Processing And Content Of Vinyl Acetate On The Properties Of Eva/organophilic Montmorillonite Nanocomposites [influência Das Condições De Mistura E Dos Teores De Acetato De Vinila E De Argila Nas Propriedades De Eva/montmorilonita Organofílica]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución