Artículos de revistas
Group Classification Of A Generalization Of The Heath Equation
Registro en:
Applied Mathematics And Computation. Elsevier Inc., v. 243, n. , p. 121 - 131, 2014.
963003
10.1016/j.amc.2014.05.100
2-s2.0-84903157450
Autor
Bozhkov Y.
Dimas S.
Institución
Resumen
The complete group classification of a generalization of the Heath model is carried out by connecting it to the heat equation with nonlinear source. Examples of invariant solutions are given under the terminal and the barrier option condition. © 2014 Elsevier Inc. All rights reserved. 243
121 131 Black, F., Scholes, M., The pricing of options and corporate liabilities (1973) J. Political Econ., 81, pp. 637-659 Longstaff, F.A., A nonlinear general equilibrium model of the term structure of interest rates (1989) J. Finance Econ., 23, pp. 195-224 Vasicek, O., An equilibrium characterization of the term structure (1977) J. Finance Econ., 5, pp. 177-188 Cox, J.C., Ingersoll, J.E., Ross, S.A., An intertemporal general equilibrium model of asset prices (1985) Econometrica, 53, pp. 363-384 Heath, D., Platin, E., Schweizer, M., Numerical comparison of local risk-minimisation and mean-variance hedging (2001) Option Pricing, Interest Rates and Risk Management, pp. 509-537. , E. Jouini, C. Jajusa, M. Murek, CUP Cambridge Gazizov, R.K., Ibragimov, N.H., Lie symmetry analysis of differential equations in finance (1998) Nonlinear Dyn., 17, pp. 387-407 Dimas, S., Andriopoulos, K., Tsoubelis, D., Leach, P.G.L., Complete specification of some partial differential equations that arise in financial mathematics (2009) J. Nonlinear Math. Phys., 16 (S-1), pp. 73-92 Sinkala, O., Leach, P., O'Hara, J., Invariance properties of a general bond-pricing equation (2008) J. Differ. Equ., 244, pp. 2820-2835 Bozhkov, Y., Dimas, S., (2014) Group Analysis of A Semi-linear General Bond-pricing Equation, , arxiv:1404.6463, arXiv preprint arXiv Naicker, V., Andriopoulos, K., Leach, P.G.L., Symmetry reductions of a Hamilton-Jacobi-Bellman equation arising in financial mathematics (2005) J. Nonlinear Math. Phys., 12, pp. 268-283 Bluman, G.W., Kumei, S., (1989) Symmetries and Differential Equations, , Springer New York Ovsiannikov, L., (1982) Group Analysis of Differential Equations, , first ed. Academic Press 432 p Ibragimov, N.H., Equivalence groups and invariants of linear and nonlinear equations (2009) Arch. ALGA, 4, pp. 41-100 Popovych, R.O., Eshraghi, H., Admissible point transformations of nonlinear Schrödinger equations (2005) Proceedings of the 10th International Conference in MOdern GRoup Analysis, pp. 167-174. , N. Ibragimov, C. Sophocleous, P. Damianou (Eds.) Romano, V., Torrisi, M., Application of weak equivalence transformations to a group analysis of a drift-diffusion model (1999) J. Phys. A: Math. Gen., 32, p. 7953 Bozhkov, Y., Dimas, S., Group classification of a generalized Black-Scholes-Merton equation (2014) Commun. Nonlinear Sci. Numer. Simul., 19, pp. 2200-2211 Cherniha, R., Serov, M., Rassokha, I., Lie symmetries and form-preserving transformations of reaction-diffusion-convection equations (2008) J. Math. Anal. Appl., 342, pp. 1363-1379 Cardoso-Bilho, E.D.S., Bilho, A., Popovych, R.O., Enhanced preliminary group classification of a class of generalized diffusion equations (2011) Commun. Nonlinear Sci. Numer. Simul., 16, pp. 3622-3638 Ivanova, N.M., Popovych, R.O., Sophocleous, C., Group analysis of variable coefficient diffusion-convection equations. I. Enhanced group classification (2010) Lobachevskii J. Math., 31, pp. 100-122 Vaneeva, O.O., Popovych, R.O., Sophocleous, C., Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source (2009) Acta Appl. Math., 106, pp. 1-46 Black, F., Scholes, M., The valuation of option contracts and a test of market efficiency (1972) J. Finance, 27, pp. 399-417 Merton, R.C., On the pricing of corporate debt: The risk structure of interest rates (1974) J. Finance, 29, pp. 449-470 Ugur, O., (2008) Introduction to Computational Finance, , Imperial College Press and World Scientific O'Hara, J., (2011) Lecture Notes on Exotic Options, , http://courses.essex.ac.uk/cf/cf966/ Kwok, Y.K., (2008) Mathematical Models of Financial Derivatives, , second ed. Springer O'Hara, J., Sophocleous, C., Leach, P.G.L., Symmetry analysis of a model for the exercise of a barrier option (2013) Commun. Nonlinear Sci. Numer. Simul., 18, pp. 2367-2373 Olver, P.J., (2000) Applications of Lie Groups to Differential Equations, 107 VOL.. , second ed. Graduate Texts in Mathematics Springer New York Head, A.K., Lie, a pc program for Lie analysis of differential equations (1993) Comput. Phys. Commun., 77, pp. 241-248 Nucci, M., Interactive REDUCE programs for calculating Lie point, non-classical, Lie-Bäcklund, and approximate symmetries of differential equations: Manual and floppy disk (1996) CRC Handbook of Lie Group Analysis of Differential Equations, VOL. III, pp. 415-481. , N. Ibragimov, New Trends CRC Press Nucci, M., Interactive REDUCE programs for calculating classical, nonclassical and Lie-Bäcklund symmetries for differential equations (1992) Computational and Applied Mathematics, VOL. II, pp. 345-350. , W. Ames, P. Van der Houwen, Differential Equations Elsevier Baumann, G., (2000) Symmetry Analysis of Differential Equations with Mathematica, , Telos/Springer New York (2010) Mathematica Edition: Version 8.0, , W. Reasearch Inc. Wolfram Reasearch Inc., Champaign, Illinois Dimas, S., (2008) Partial Differential Equations, Algebraic Computing and Nonlinear Systems, , (Ph.D. thesis), University of Patras, Patras, Greece Dimas, S., Tsoubelis, D., SYM: A new symmetry-finding package for mathematica (2005) The 10th International Conference in MOdern GRoup ANalysis, pp. 64-70. , N. Ibragimov, C. Sophocleous, P. Damianou, University of Cyprus Nicosia Dimas, S., Tsoubelis, D., A new mathematica-based program for solving overdetermined systems of PDEs (2006) Applied Mathematica, Electronic Proceedings of the Eighth International Mathematica Symposium (IMS'06), France, , Y. Papegay, INRIA Avignon, France 2-7261-1289-7 Ibragimov, N.H., (1985) Transformation Groups Applied to Mathematical Physics, , first ed. Mathematics and its Applications Springer Hydon, P.E., (2000) Symmetry Methods for Differential Equations, , first ed. Cambridge Texts in Applied Mathematics Cambridge University Press Cambridge Stephani, H., (1990) Differential Equations: Their Solution Using Symmetries, , Malcolm MacCallum, first ed. Cambridge University Press Cambridge Zhdanov, R.Z., Lahno, V.I., Group classification of heat conductivity equations with a nonlinear source (1999) J. Phys. A: Math. Gen., 32, pp. 7405-7418