dc.creatorBozhkov Y.
dc.creatorDimas S.
dc.date2014
dc.date2015-06-25T18:01:21Z
dc.date2015-11-26T15:03:07Z
dc.date2015-06-25T18:01:21Z
dc.date2015-11-26T15:03:07Z
dc.date.accessioned2018-03-28T22:13:59Z
dc.date.available2018-03-28T22:13:59Z
dc.identifier
dc.identifierApplied Mathematics And Computation. Elsevier Inc., v. 243, n. , p. 121 - 131, 2014.
dc.identifier963003
dc.identifier10.1016/j.amc.2014.05.100
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84903157450&partnerID=40&md5=07a70d503730c166873c8f1e45798d80
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87557
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87557
dc.identifier2-s2.0-84903157450
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256538
dc.descriptionThe complete group classification of a generalization of the Heath model is carried out by connecting it to the heat equation with nonlinear source. Examples of invariant solutions are given under the terminal and the barrier option condition. © 2014 Elsevier Inc. All rights reserved.
dc.description243
dc.description
dc.description121
dc.description131
dc.descriptionBlack, F., Scholes, M., The pricing of options and corporate liabilities (1973) J. Political Econ., 81, pp. 637-659
dc.descriptionLongstaff, F.A., A nonlinear general equilibrium model of the term structure of interest rates (1989) J. Finance Econ., 23, pp. 195-224
dc.descriptionVasicek, O., An equilibrium characterization of the term structure (1977) J. Finance Econ., 5, pp. 177-188
dc.descriptionCox, J.C., Ingersoll, J.E., Ross, S.A., An intertemporal general equilibrium model of asset prices (1985) Econometrica, 53, pp. 363-384
dc.descriptionHeath, D., Platin, E., Schweizer, M., Numerical comparison of local risk-minimisation and mean-variance hedging (2001) Option Pricing, Interest Rates and Risk Management, pp. 509-537. , E. Jouini, C. Jajusa, M. Murek, CUP Cambridge
dc.descriptionGazizov, R.K., Ibragimov, N.H., Lie symmetry analysis of differential equations in finance (1998) Nonlinear Dyn., 17, pp. 387-407
dc.descriptionDimas, S., Andriopoulos, K., Tsoubelis, D., Leach, P.G.L., Complete specification of some partial differential equations that arise in financial mathematics (2009) J. Nonlinear Math. Phys., 16 (S-1), pp. 73-92
dc.descriptionSinkala, O., Leach, P., O'Hara, J., Invariance properties of a general bond-pricing equation (2008) J. Differ. Equ., 244, pp. 2820-2835
dc.descriptionBozhkov, Y., Dimas, S., (2014) Group Analysis of A Semi-linear General Bond-pricing Equation, , arxiv:1404.6463, arXiv preprint arXiv
dc.descriptionNaicker, V., Andriopoulos, K., Leach, P.G.L., Symmetry reductions of a Hamilton-Jacobi-Bellman equation arising in financial mathematics (2005) J. Nonlinear Math. Phys., 12, pp. 268-283
dc.descriptionBluman, G.W., Kumei, S., (1989) Symmetries and Differential Equations, , Springer New York
dc.descriptionOvsiannikov, L., (1982) Group Analysis of Differential Equations, , first ed. Academic Press 432 p
dc.descriptionIbragimov, N.H., Equivalence groups and invariants of linear and nonlinear equations (2009) Arch. ALGA, 4, pp. 41-100
dc.descriptionPopovych, R.O., Eshraghi, H., Admissible point transformations of nonlinear Schrödinger equations (2005) Proceedings of the 10th International Conference in MOdern GRoup Analysis, pp. 167-174. , N. Ibragimov, C. Sophocleous, P. Damianou (Eds.)
dc.descriptionRomano, V., Torrisi, M., Application of weak equivalence transformations to a group analysis of a drift-diffusion model (1999) J. Phys. A: Math. Gen., 32, p. 7953
dc.descriptionBozhkov, Y., Dimas, S., Group classification of a generalized Black-Scholes-Merton equation (2014) Commun. Nonlinear Sci. Numer. Simul., 19, pp. 2200-2211
dc.descriptionCherniha, R., Serov, M., Rassokha, I., Lie symmetries and form-preserving transformations of reaction-diffusion-convection equations (2008) J. Math. Anal. Appl., 342, pp. 1363-1379
dc.descriptionCardoso-Bilho, E.D.S., Bilho, A., Popovych, R.O., Enhanced preliminary group classification of a class of generalized diffusion equations (2011) Commun. Nonlinear Sci. Numer. Simul., 16, pp. 3622-3638
dc.descriptionIvanova, N.M., Popovych, R.O., Sophocleous, C., Group analysis of variable coefficient diffusion-convection equations. I. Enhanced group classification (2010) Lobachevskii J. Math., 31, pp. 100-122
dc.descriptionVaneeva, O.O., Popovych, R.O., Sophocleous, C., Enhanced group analysis and exact solutions of variable coefficient semilinear diffusion equations with a power source (2009) Acta Appl. Math., 106, pp. 1-46
dc.descriptionBlack, F., Scholes, M., The valuation of option contracts and a test of market efficiency (1972) J. Finance, 27, pp. 399-417
dc.descriptionMerton, R.C., On the pricing of corporate debt: The risk structure of interest rates (1974) J. Finance, 29, pp. 449-470
dc.descriptionUgur, O., (2008) Introduction to Computational Finance, , Imperial College Press and World Scientific
dc.descriptionO'Hara, J., (2011) Lecture Notes on Exotic Options, , http://courses.essex.ac.uk/cf/cf966/
dc.descriptionKwok, Y.K., (2008) Mathematical Models of Financial Derivatives, , second ed. Springer
dc.descriptionO'Hara, J., Sophocleous, C., Leach, P.G.L., Symmetry analysis of a model for the exercise of a barrier option (2013) Commun. Nonlinear Sci. Numer. Simul., 18, pp. 2367-2373
dc.descriptionOlver, P.J., (2000) Applications of Lie Groups to Differential Equations, 107 VOL.. , second ed. Graduate Texts in Mathematics Springer New York
dc.descriptionHead, A.K., Lie, a pc program for Lie analysis of differential equations (1993) Comput. Phys. Commun., 77, pp. 241-248
dc.descriptionNucci, M., Interactive REDUCE programs for calculating Lie point, non-classical, Lie-Bäcklund, and approximate symmetries of differential equations: Manual and floppy disk (1996) CRC Handbook of Lie Group Analysis of Differential Equations, VOL. III, pp. 415-481. , N. Ibragimov, New Trends CRC Press
dc.descriptionNucci, M., Interactive REDUCE programs for calculating classical, nonclassical and Lie-Bäcklund symmetries for differential equations (1992) Computational and Applied Mathematics, VOL. II, pp. 345-350. , W. Ames, P. Van der Houwen, Differential Equations Elsevier
dc.descriptionBaumann, G., (2000) Symmetry Analysis of Differential Equations with Mathematica, , Telos/Springer New York
dc.description(2010) Mathematica Edition: Version 8.0, , W. Reasearch Inc. Wolfram Reasearch Inc., Champaign, Illinois
dc.descriptionDimas, S., (2008) Partial Differential Equations, Algebraic Computing and Nonlinear Systems, , (Ph.D. thesis), University of Patras, Patras, Greece
dc.descriptionDimas, S., Tsoubelis, D., SYM: A new symmetry-finding package for mathematica (2005) The 10th International Conference in MOdern GRoup ANalysis, pp. 64-70. , N. Ibragimov, C. Sophocleous, P. Damianou, University of Cyprus Nicosia
dc.descriptionDimas, S., Tsoubelis, D., A new mathematica-based program for solving overdetermined systems of PDEs (2006) Applied Mathematica, Electronic Proceedings of the Eighth International Mathematica Symposium (IMS'06), France, , Y. Papegay, INRIA Avignon, France 2-7261-1289-7
dc.descriptionIbragimov, N.H., (1985) Transformation Groups Applied to Mathematical Physics, , first ed. Mathematics and its Applications Springer
dc.descriptionHydon, P.E., (2000) Symmetry Methods for Differential Equations, , first ed. Cambridge Texts in Applied Mathematics Cambridge University Press Cambridge
dc.descriptionStephani, H., (1990) Differential Equations: Their Solution Using Symmetries, , Malcolm MacCallum, first ed. Cambridge University Press Cambridge
dc.descriptionZhdanov, R.Z., Lahno, V.I., Group classification of heat conductivity equations with a nonlinear source (1999) J. Phys. A: Math. Gen., 32, pp. 7405-7418
dc.languageen
dc.publisherElsevier Inc.
dc.relationApplied Mathematics and Computation
dc.rightsfechado
dc.sourceScopus
dc.titleGroup Classification Of A Generalization Of The Heath Equation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución