Artículos de revistas
Finite-dimensional Representations Of Twisted Hyper-loop Algebras
Registro en:
Communications In Algebra. , v. 42, n. 7, p. 3147 - 3182, 2014.
927872
10.1080/00927872.2013.781610
2-s2.0-84897829850
Autor
Bianchi A.
Moura A.
Institución
Resumen
We investigate the category of finite-dimensional representations of twisted hyper-loop algebras, i.e., the hyperalgebras associated to twisted loop algebras over finite-dimensional simple Lie algebras. The main results are the classification of the irreducible modules, the definition of the universal highest-weight modules, called the Weyl modules, and, under a certain mild restriction on the characteristic of the ground field, a proof that the simple modules and the Weyl modules for the twisted hyper-loop algebras are isomorphic to appropriate simple and Weyl modules for the nontwisted hyper-loop algebras, respectively, via restriction of the action. © 2014 Copyright Taylor & Francis Group, LLC. 42 7 3147 3182 Beck, J., Nakajima, H., Crystal bases and two-sided cells of quantum affine algebras (2004) Duke Math. J., 123, pp. 335-402 Bianchi, A., (2012) Representações de hiperálgebras de laços e álgebras de multicorrentes, , Ph.D. Thesis, Unicamp, Campinas, Brazil Bianchi, A., Macedo, T., Moura, A., On Demazure and local Weyl modules for affine hyperalgebras, , Preprint:arXiv:1307.4305 Chari, V., Fourier, G., Senesi, P., Weyl Modules for the twisted loop algebras (2008) J. Algebra, 319 (12), pp. 5016-5038 Chari, V., Loktev, S., Weyl, Demazure and fusion modules for the current algebra of s{fraktur}l{fraktur}r+1 (2006) Adv. in Math., 207 (2), pp. 928-960 Chari, V., Pressley, A., Weyl modules for classical and quantum affine algebras (2001) Represent. Theory, 5, pp. 191-223 Efrat, I., (2006) Valuation, Orderings, and Milnor K-Theory, , Mathematical Surveys and Monographs AMS, 124 Fourier, G., Khandai, T., Kus, D., Savage, A., Local Weyl modules for equivariant map algebras with free abelian group actions (2012) J. Algebra, 350, pp. 386-404 Fourier, G., Kus, D., Demazure modules and Weyl modules: The twisted current case (2013) To appear in Trans. Amer. Math. Soc., 365 (11), pp. 6037-6064 Fourier, G., Littelmann, P., Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions (2007) Adv. in Math., 211 (2), pp. 566-593 Fourier, G., Manning, N., Senesi, P., Global Weyl modules for the twisted loop algebra (2013) Abh. Math. Semin. Univ. Hambg., 83 (1), pp. 53-82 Garland, H., The arithmetic theory of loop algebras (1978) J. Algebra, 53, pp. 480-551 Humphreys, J.E., (1970) Introduction to Lie algebras and representation theory, , Springer-Verlag, GTM, 9 Jakelic, D., Moura, A., Finite-dimensional representations of hyper-loop algebras (2007) Pacific J. Math., 233 (2), pp. 371-402 Jakelic, D., Moura, A., Finite-dimensional representations of hyper-loop algebras over non-algebraically closed fields (2010) Algebras and Representation Theory, 13 (3), pp. 271-301 Jakelic, D., Moura, A., On multiplicity problems for finite-dimensional representations of hyper-loop algebras (2009) Contemp. Math., 483, pp. 147-159 Jantzen, J., (1987) Representations of Algebraic Groups, , Boston, Academic Press Kac, V., (1990) Infinite Dimensional Lie Algebras, , New York, Cambridge University Press Kashiwara, M., Crystal bases of modified quantized enveloping algebras (1994) Duke Math. J., 73, pp. 383-413 Kashiwara, M., On level zero representations of quantized affine algebras (2002) Duke Math. J., 112, pp. 117-195 Kostant, B., (1966) Groups over ℤ, , Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. IX, Providence, AMS Mitzman, D., Integral bases for affine lie algebras and their universal enveloping algebras (1983) Contemp. Math., p. 40 Nakajima, H., Quiver varieties and finite-dimensional representations of quantum affine algebras (2001) J. Amer. Math. Soc., 14, pp. 145-238 Nakajima, H., Extremal weight modules of quantum affine algebras (2004) Adv. Stud. Pure Math., 40, pp. 343-369 Naoi, K., Weyl modules, Demazure modules and finite crystals for non-simply laced type (2012) Adv. in Math., 229 (2), pp. 875-934 Neher, E., Savage, A., Extensions and block decompositions for finite-dimensional representations of equivariant map algebras, , arXiv:1103.4367 Neher, E., Savage, A., Senesi, P., Irreducible finite-dimensional representations of equivariant map algebras (2012) Trans. Amer. Math. Soc., 364 (5), pp. 2619-2646 Prevost, S., (1992) Vertex algebras and integral Bases for the enveloping algebras of affine lie algebras, , Mem. Math. Amer. Soc., 466 Senesi, P., The block decomposition of finite-dimensional representations of twisted loop algebras (2010) Pacific J. Math., 244 (2), pp. 355-357 Serre, J.-P., (1980) Local Fields, , Springer-Verlag GTM 67