dc.creatorBianchi A.
dc.creatorMoura A.
dc.date2014
dc.date2015-06-25T18:01:19Z
dc.date2015-11-26T15:03:06Z
dc.date2015-06-25T18:01:19Z
dc.date2015-11-26T15:03:06Z
dc.date.accessioned2018-03-28T22:13:58Z
dc.date.available2018-03-28T22:13:58Z
dc.identifier
dc.identifierCommunications In Algebra. , v. 42, n. 7, p. 3147 - 3182, 2014.
dc.identifier927872
dc.identifier10.1080/00927872.2013.781610
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84897829850&partnerID=40&md5=e98f1dd8b883cc254702cbb38ef06585
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87547
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87547
dc.identifier2-s2.0-84897829850
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256534
dc.descriptionWe investigate the category of finite-dimensional representations of twisted hyper-loop algebras, i.e., the hyperalgebras associated to twisted loop algebras over finite-dimensional simple Lie algebras. The main results are the classification of the irreducible modules, the definition of the universal highest-weight modules, called the Weyl modules, and, under a certain mild restriction on the characteristic of the ground field, a proof that the simple modules and the Weyl modules for the twisted hyper-loop algebras are isomorphic to appropriate simple and Weyl modules for the nontwisted hyper-loop algebras, respectively, via restriction of the action. © 2014 Copyright Taylor & Francis Group, LLC.
dc.description42
dc.description7
dc.description3147
dc.description3182
dc.descriptionBeck, J., Nakajima, H., Crystal bases and two-sided cells of quantum affine algebras (2004) Duke Math. J., 123, pp. 335-402
dc.descriptionBianchi, A., (2012) Representações de hiperálgebras de laços e álgebras de multicorrentes, , Ph.D. Thesis, Unicamp, Campinas, Brazil
dc.descriptionBianchi, A., Macedo, T., Moura, A., On Demazure and local Weyl modules for affine hyperalgebras, , Preprint:arXiv:1307.4305
dc.descriptionChari, V., Fourier, G., Senesi, P., Weyl Modules for the twisted loop algebras (2008) J. Algebra, 319 (12), pp. 5016-5038
dc.descriptionChari, V., Loktev, S., Weyl, Demazure and fusion modules for the current algebra of s{fraktur}l{fraktur}r+1 (2006) Adv. in Math., 207 (2), pp. 928-960
dc.descriptionChari, V., Pressley, A., Weyl modules for classical and quantum affine algebras (2001) Represent. Theory, 5, pp. 191-223
dc.descriptionEfrat, I., (2006) Valuation, Orderings, and Milnor K-Theory, , Mathematical Surveys and Monographs AMS, 124
dc.descriptionFourier, G., Khandai, T., Kus, D., Savage, A., Local Weyl modules for equivariant map algebras with free abelian group actions (2012) J. Algebra, 350, pp. 386-404
dc.descriptionFourier, G., Kus, D., Demazure modules and Weyl modules: The twisted current case (2013) To appear in Trans. Amer. Math. Soc., 365 (11), pp. 6037-6064
dc.descriptionFourier, G., Littelmann, P., Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions (2007) Adv. in Math., 211 (2), pp. 566-593
dc.descriptionFourier, G., Manning, N., Senesi, P., Global Weyl modules for the twisted loop algebra (2013) Abh. Math. Semin. Univ. Hambg., 83 (1), pp. 53-82
dc.descriptionGarland, H., The arithmetic theory of loop algebras (1978) J. Algebra, 53, pp. 480-551
dc.descriptionHumphreys, J.E., (1970) Introduction to Lie algebras and representation theory, , Springer-Verlag, GTM, 9
dc.descriptionJakelic, D., Moura, A., Finite-dimensional representations of hyper-loop algebras (2007) Pacific J. Math., 233 (2), pp. 371-402
dc.descriptionJakelic, D., Moura, A., Finite-dimensional representations of hyper-loop algebras over non-algebraically closed fields (2010) Algebras and Representation Theory, 13 (3), pp. 271-301
dc.descriptionJakelic, D., Moura, A., On multiplicity problems for finite-dimensional representations of hyper-loop algebras (2009) Contemp. Math., 483, pp. 147-159
dc.descriptionJantzen, J., (1987) Representations of Algebraic Groups, , Boston, Academic Press
dc.descriptionKac, V., (1990) Infinite Dimensional Lie Algebras, , New York, Cambridge University Press
dc.descriptionKashiwara, M., Crystal bases of modified quantized enveloping algebras (1994) Duke Math. J., 73, pp. 383-413
dc.descriptionKashiwara, M., On level zero representations of quantized affine algebras (2002) Duke Math. J., 112, pp. 117-195
dc.descriptionKostant, B., (1966) Groups over ℤ, , Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. IX, Providence, AMS
dc.descriptionMitzman, D., Integral bases for affine lie algebras and their universal enveloping algebras (1983) Contemp. Math., p. 40
dc.descriptionNakajima, H., Quiver varieties and finite-dimensional representations of quantum affine algebras (2001) J. Amer. Math. Soc., 14, pp. 145-238
dc.descriptionNakajima, H., Extremal weight modules of quantum affine algebras (2004) Adv. Stud. Pure Math., 40, pp. 343-369
dc.descriptionNaoi, K., Weyl modules, Demazure modules and finite crystals for non-simply laced type (2012) Adv. in Math., 229 (2), pp. 875-934
dc.descriptionNeher, E., Savage, A., Extensions and block decompositions for finite-dimensional representations of equivariant map algebras, , arXiv:1103.4367
dc.descriptionNeher, E., Savage, A., Senesi, P., Irreducible finite-dimensional representations of equivariant map algebras (2012) Trans. Amer. Math. Soc., 364 (5), pp. 2619-2646
dc.descriptionPrevost, S., (1992) Vertex algebras and integral Bases for the enveloping algebras of affine lie algebras, , Mem. Math. Amer. Soc., 466
dc.descriptionSenesi, P., The block decomposition of finite-dimensional representations of twisted loop algebras (2010) Pacific J. Math., 244 (2), pp. 355-357
dc.descriptionSerre, J.-P., (1980) Local Fields, , Springer-Verlag GTM 67
dc.languageen
dc.publisher
dc.relationCommunications in Algebra
dc.rightsfechado
dc.sourceScopus
dc.titleFinite-dimensional Representations Of Twisted Hyper-loop Algebras
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución