Artículos de revistas
Classes Of Hypercomplex Polynomials Of Discrete Variable Based On The Quasi-monomiality Principle
Registration in:
Applied Mathematics And Computation. Elsevier Inc., v. 247, n. , p. 607 - 622, 2014.
963003
10.1016/j.amc.2014.09.027
2-s2.0-84907732042
Author
Faustino N.
Institutions
Abstract
With the aim of derive a quasi-monomiality formulation in the context of discrete hypercomplex variables, one will amalgamate through a Clifford-algebraic structure of signature (0,n) the umbral calculus framework with Lie-algebraic symmetries. The exponential generating function (EGF) carrying the continuum Dirac operator D=-j=1nej-xj together with the Lie-algebraic representation of raising and lowering operators acting on the lattice hZn is used to derive the corresponding hypercomplex polynomials of discrete variable as Appell sets with membership on the space Clifford-vector-valued polynomials. Some particular examples concerning this construction such as the hypercomplex versions of falling factorials and the Poisson-Charlier polynomials are introduced. Certain applications from the view of interpolation theory and integral transforms are also discussed. 247
607 622 Baaske, F., Bernstein, S., De Ridder, H., Sommen, F., On solutions of a discretized heat equation in discrete Clifford analysis (2014) J. Differ. Equ. Appl., 20 (2), pp. 271-295 Belingeri, C., Dattoli, G., Khan, S., Ricci, P.E., Monomiality and multi-index multi-variable special polynomials (2007) Integr. Transf. Spec. Funct., 18 (7), pp. 449-458 Ben Cheikh, Y., Zaghouani, A., Some discrete d-orthogonal polynomial sets (2003) J. Comput. Appl. Math., 156 (2), pp. 253-263 Blasiak, P., Dattoli, G., Horzela, A., Penson, K.A., Representations of monomiality principle with Sheffer-type polynomials and boson normal ordering (2006) Phys. Lett. A, 352 (1), pp. 7-12 Cação, I., Falcão, M.I., Malonek, H.R., Laguerre derivative and monogenic Laguerre polynomials: An operational approach (2011) Math. Comput. Model., 53 (5), pp. 838-847 Constales, D., Faustino, N., Krauhar, R.S., Fock spaces, Landau operators and the time-harmonic Maxwell equations (2011) J. Phys. A: Math. Theor., 44 (13), p. 135303 Dattoli, G., Srivastava, H.M., Khan, S., Operational versus Lie-algebraic methods and the theory of multi-variable Hermite polynomials (2005) Integr. Transf. Spec. Funct., 16 (1), pp. 81-91 De Ridder, H., De Schepper, H., Sommen, F., Taylor series expansion in discrete Clifford analysis (2014) Complex Anal. Oper. Theory, 8 (2), pp. 485-511 Di Bucchianico, A., Loeb, D.E., Rota, G.-C., Umbral calculus in Hilbert space (1998) Mathematical Essays in Honor of Gian-Carlo Rota, pp. 213-238. , B. Sagan, R.P. Stanley, Birkhäuser Boston Dimakis, A., Mueller-Hoissen, F., Striker, T., Umbral calculus, discretization, and quantum mechanics on a lattice (1996) J. Phys. A, 29, pp. 6861-6876 Eelbode, D., Monogenic Appell sets as representations of the Heisenberg algebra (2012) Adv. Appl. Cliff. Alg., 22 (4), pp. 1009-1023 Faustino, N., Kähler, U., Fischer decomposition for difference Dirac operators (2007) Adv. Appl. Cliff. Alg., 17 (1), pp. 37-58 Faustino, N., Ren, G., (Discrete) Almansi type decompositions: An umbral calculus framework based on osp (1 | 2) symmetries (2011) Math. Methods Appl. Sci., 34 (16), pp. 1961-1979 Faustino, N., Special functions of hypercomplex variable on the lattice based on SU (1, 1) (2013) SIGMA, 9, p. 065. , 18 pages Froyen, S., Brillouin-zone integration by Fourier quadrature: Special points for superlattice and supercell calculations (1989) Phys. Rev. B, 39, pp. 3168-3172 Gagnon, L., Winternitz, P., Lie symmetries of a generalised nonlinear Schrodinger equation: I. The symmetry group and its subgroups (1988) J. Phys. A: Math. Gen., 21 (7), p. 1493 Gürlebeck, K., Sprössig, W., (1997) Quaternionic and Clifford Calculus for Physicists and Engineers, , Wiley Chichester Gürlebeck, K., Hommel, A., On finite difference Dirac operators and their fundamental solutions (2001) Adv. Appl. Cliff. Alg., 11 (2), pp. 89-106 Howe, R., Remarks on classical invariant theory (1989) Trans. Am. Math. Soc., 313, pp. 539-570 Kisil, V.V., Polynomial sequences of binomial type and path integrals (2002) Ann. Comb., 6 (1), pp. 45-56 Lvika, R., Complete orthogonal Appell systems for spherical monogenics (2012) Complex Anal. Oper. Theory, 6 (2), pp. 477-489 Levi, D., Tempesta, P., Winternitz, P., Umbral calculus, difference equations and the discrete Schrödinger equation (2004) J. Math. Phys., 45 (11), pp. 4077-4105 Malonek, H.R., Tomaz, G., Bernoulli polynomials and Pascal matrices in the context of Clifford analysis (2009) Discrete Appl. Math., 157, pp. 838-847 Rodrigues, W.A., Jr., De Oliveira, E.C., (2007) The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach, 722 VOL.. , Springer Heidelberg Roman, S., (1984) The Umbral Calculus, , Academic Press Orlando, FL Rothe, H.J., (2005) Lattice Gauge Theories: An Introduction, 74 VOL.. , World Scientific Singapore Srivastava, H.M., Ben Cheikh, Y., Orthogonality of some polynomial sets via quasi-monomiality (2003) Appl. Math. Comput., 141 (2), pp. 415-425 Smirnov, Y., Turbiner, A., Lie algebraic discretization of differential equations (1995) Modern Phys. Lett. A, 10 (24), pp. 1795-1802 Smirnov, Y., Turbiner, A., Errata: Lie algebraic discretization of differential equations (1995) Modern Phys. Lett. A, 10 (40), p. 3139 Sommen, F., An algebra of abstract vector variables (1997) Portugaliae Math., 54 (3), pp. 287-310 Turbiner, A.V., Ushveridze, A.G., Spectral singularities and quasi-exactly solvable quantal problem (1987) Phys. Lett. A, 126 (3), pp. 181-183 Vinet, L., Zhedanov, A., Automorphisms of the Heisenberg-Weyl algebra and d-orthogonal polynomials (2009) J. Math. Phys., 50, p. 033511 Wigner, E.P., Do the equations of motion determine the quantum mechanical commutation relations? (1950) Phys. Rev., 77, pp. 711-712