dc.creator | Faustino N. | |
dc.date | 2014 | |
dc.date | 2015-06-25T18:01:22Z | |
dc.date | 2015-11-26T15:03:03Z | |
dc.date | 2015-06-25T18:01:22Z | |
dc.date | 2015-11-26T15:03:03Z | |
dc.date.accessioned | 2018-03-28T22:13:55Z | |
dc.date.available | 2018-03-28T22:13:55Z | |
dc.identifier | | |
dc.identifier | Applied Mathematics And Computation. Elsevier Inc., v. 247, n. , p. 607 - 622, 2014. | |
dc.identifier | 963003 | |
dc.identifier | 10.1016/j.amc.2014.09.027 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84907732042&partnerID=40&md5=8b820a5793848c4f0668af7f7f6f2506 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/87558 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/87558 | |
dc.identifier | 2-s2.0-84907732042 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1256521 | |
dc.description | With the aim of derive a quasi-monomiality formulation in the context of discrete hypercomplex variables, one will amalgamate through a Clifford-algebraic structure of signature (0,n) the umbral calculus framework with Lie-algebraic symmetries. The exponential generating function (EGF) carrying the continuum Dirac operator D=-j=1nej-xj together with the Lie-algebraic representation of raising and lowering operators acting on the lattice hZn is used to derive the corresponding hypercomplex polynomials of discrete variable as Appell sets with membership on the space Clifford-vector-valued polynomials. Some particular examples concerning this construction such as the hypercomplex versions of falling factorials and the Poisson-Charlier polynomials are introduced. Certain applications from the view of interpolation theory and integral transforms are also discussed. | |
dc.description | 247 | |
dc.description | | |
dc.description | 607 | |
dc.description | 622 | |
dc.description | Baaske, F., Bernstein, S., De Ridder, H., Sommen, F., On solutions of a discretized heat equation in discrete Clifford analysis (2014) J. Differ. Equ. Appl., 20 (2), pp. 271-295 | |
dc.description | Belingeri, C., Dattoli, G., Khan, S., Ricci, P.E., Monomiality and multi-index multi-variable special polynomials (2007) Integr. Transf. Spec. Funct., 18 (7), pp. 449-458 | |
dc.description | Ben Cheikh, Y., Zaghouani, A., Some discrete d-orthogonal polynomial sets (2003) J. Comput. Appl. Math., 156 (2), pp. 253-263 | |
dc.description | Blasiak, P., Dattoli, G., Horzela, A., Penson, K.A., Representations of monomiality principle with Sheffer-type polynomials and boson normal ordering (2006) Phys. Lett. A, 352 (1), pp. 7-12 | |
dc.description | Cação, I., Falcão, M.I., Malonek, H.R., Laguerre derivative and monogenic Laguerre polynomials: An operational approach (2011) Math. Comput. Model., 53 (5), pp. 838-847 | |
dc.description | Constales, D., Faustino, N., Krauhar, R.S., Fock spaces, Landau operators and the time-harmonic Maxwell equations (2011) J. Phys. A: Math. Theor., 44 (13), p. 135303 | |
dc.description | Dattoli, G., Srivastava, H.M., Khan, S., Operational versus Lie-algebraic methods and the theory of multi-variable Hermite polynomials (2005) Integr. Transf. Spec. Funct., 16 (1), pp. 81-91 | |
dc.description | De Ridder, H., De Schepper, H., Sommen, F., Taylor series expansion in discrete Clifford analysis (2014) Complex Anal. Oper. Theory, 8 (2), pp. 485-511 | |
dc.description | Di Bucchianico, A., Loeb, D.E., Rota, G.-C., Umbral calculus in Hilbert space (1998) Mathematical Essays in Honor of Gian-Carlo Rota, pp. 213-238. , B. Sagan, R.P. Stanley, Birkhäuser Boston | |
dc.description | Dimakis, A., Mueller-Hoissen, F., Striker, T., Umbral calculus, discretization, and quantum mechanics on a lattice (1996) J. Phys. A, 29, pp. 6861-6876 | |
dc.description | Eelbode, D., Monogenic Appell sets as representations of the Heisenberg algebra (2012) Adv. Appl. Cliff. Alg., 22 (4), pp. 1009-1023 | |
dc.description | Faustino, N., Kähler, U., Fischer decomposition for difference Dirac operators (2007) Adv. Appl. Cliff. Alg., 17 (1), pp. 37-58 | |
dc.description | Faustino, N., Ren, G., (Discrete) Almansi type decompositions: An umbral calculus framework based on osp (1 | 2) symmetries (2011) Math. Methods Appl. Sci., 34 (16), pp. 1961-1979 | |
dc.description | Faustino, N., Special functions of hypercomplex variable on the lattice based on SU (1, 1) (2013) SIGMA, 9, p. 065. , 18 pages | |
dc.description | Froyen, S., Brillouin-zone integration by Fourier quadrature: Special points for superlattice and supercell calculations (1989) Phys. Rev. B, 39, pp. 3168-3172 | |
dc.description | Gagnon, L., Winternitz, P., Lie symmetries of a generalised nonlinear Schrodinger equation: I. The symmetry group and its subgroups (1988) J. Phys. A: Math. Gen., 21 (7), p. 1493 | |
dc.description | Gürlebeck, K., Sprössig, W., (1997) Quaternionic and Clifford Calculus for Physicists and Engineers, , Wiley Chichester | |
dc.description | Gürlebeck, K., Hommel, A., On finite difference Dirac operators and their fundamental solutions (2001) Adv. Appl. Cliff. Alg., 11 (2), pp. 89-106 | |
dc.description | Howe, R., Remarks on classical invariant theory (1989) Trans. Am. Math. Soc., 313, pp. 539-570 | |
dc.description | Kisil, V.V., Polynomial sequences of binomial type and path integrals (2002) Ann. Comb., 6 (1), pp. 45-56 | |
dc.description | Lvika, R., Complete orthogonal Appell systems for spherical monogenics (2012) Complex Anal. Oper. Theory, 6 (2), pp. 477-489 | |
dc.description | Levi, D., Tempesta, P., Winternitz, P., Umbral calculus, difference equations and the discrete Schrödinger equation (2004) J. Math. Phys., 45 (11), pp. 4077-4105 | |
dc.description | Malonek, H.R., Tomaz, G., Bernoulli polynomials and Pascal matrices in the context of Clifford analysis (2009) Discrete Appl. Math., 157, pp. 838-847 | |
dc.description | Rodrigues, W.A., Jr., De Oliveira, E.C., (2007) The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach, 722 VOL.. , Springer Heidelberg | |
dc.description | Roman, S., (1984) The Umbral Calculus, , Academic Press Orlando, FL | |
dc.description | Rothe, H.J., (2005) Lattice Gauge Theories: An Introduction, 74 VOL.. , World Scientific Singapore | |
dc.description | Srivastava, H.M., Ben Cheikh, Y., Orthogonality of some polynomial sets via quasi-monomiality (2003) Appl. Math. Comput., 141 (2), pp. 415-425 | |
dc.description | Smirnov, Y., Turbiner, A., Lie algebraic discretization of differential equations (1995) Modern Phys. Lett. A, 10 (24), pp. 1795-1802 | |
dc.description | Smirnov, Y., Turbiner, A., Errata: Lie algebraic discretization of differential equations (1995) Modern Phys. Lett. A, 10 (40), p. 3139 | |
dc.description | Sommen, F., An algebra of abstract vector variables (1997) Portugaliae Math., 54 (3), pp. 287-310 | |
dc.description | Turbiner, A.V., Ushveridze, A.G., Spectral singularities and quasi-exactly solvable quantal problem (1987) Phys. Lett. A, 126 (3), pp. 181-183 | |
dc.description | Vinet, L., Zhedanov, A., Automorphisms of the Heisenberg-Weyl algebra and d-orthogonal polynomials (2009) J. Math. Phys., 50, p. 033511 | |
dc.description | Wigner, E.P., Do the equations of motion determine the quantum mechanical commutation relations? (1950) Phys. Rev., 77, pp. 711-712 | |
dc.language | en | |
dc.publisher | Elsevier Inc. | |
dc.relation | Applied Mathematics and Computation | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Classes Of Hypercomplex Polynomials Of Discrete Variable Based On The Quasi-monomiality Principle | |
dc.type | Artículos de revistas | |