dc.creatorFaustino N.
dc.date2014
dc.date2015-06-25T18:01:22Z
dc.date2015-11-26T15:03:03Z
dc.date2015-06-25T18:01:22Z
dc.date2015-11-26T15:03:03Z
dc.date.accessioned2018-03-28T22:13:55Z
dc.date.available2018-03-28T22:13:55Z
dc.identifier
dc.identifierApplied Mathematics And Computation. Elsevier Inc., v. 247, n. , p. 607 - 622, 2014.
dc.identifier963003
dc.identifier10.1016/j.amc.2014.09.027
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84907732042&partnerID=40&md5=8b820a5793848c4f0668af7f7f6f2506
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87558
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87558
dc.identifier2-s2.0-84907732042
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256521
dc.descriptionWith the aim of derive a quasi-monomiality formulation in the context of discrete hypercomplex variables, one will amalgamate through a Clifford-algebraic structure of signature (0,n) the umbral calculus framework with Lie-algebraic symmetries. The exponential generating function (EGF) carrying the continuum Dirac operator D=-j=1nej-xj together with the Lie-algebraic representation of raising and lowering operators acting on the lattice hZn is used to derive the corresponding hypercomplex polynomials of discrete variable as Appell sets with membership on the space Clifford-vector-valued polynomials. Some particular examples concerning this construction such as the hypercomplex versions of falling factorials and the Poisson-Charlier polynomials are introduced. Certain applications from the view of interpolation theory and integral transforms are also discussed.
dc.description247
dc.description
dc.description607
dc.description622
dc.descriptionBaaske, F., Bernstein, S., De Ridder, H., Sommen, F., On solutions of a discretized heat equation in discrete Clifford analysis (2014) J. Differ. Equ. Appl., 20 (2), pp. 271-295
dc.descriptionBelingeri, C., Dattoli, G., Khan, S., Ricci, P.E., Monomiality and multi-index multi-variable special polynomials (2007) Integr. Transf. Spec. Funct., 18 (7), pp. 449-458
dc.descriptionBen Cheikh, Y., Zaghouani, A., Some discrete d-orthogonal polynomial sets (2003) J. Comput. Appl. Math., 156 (2), pp. 253-263
dc.descriptionBlasiak, P., Dattoli, G., Horzela, A., Penson, K.A., Representations of monomiality principle with Sheffer-type polynomials and boson normal ordering (2006) Phys. Lett. A, 352 (1), pp. 7-12
dc.descriptionCação, I., Falcão, M.I., Malonek, H.R., Laguerre derivative and monogenic Laguerre polynomials: An operational approach (2011) Math. Comput. Model., 53 (5), pp. 838-847
dc.descriptionConstales, D., Faustino, N., Krauhar, R.S., Fock spaces, Landau operators and the time-harmonic Maxwell equations (2011) J. Phys. A: Math. Theor., 44 (13), p. 135303
dc.descriptionDattoli, G., Srivastava, H.M., Khan, S., Operational versus Lie-algebraic methods and the theory of multi-variable Hermite polynomials (2005) Integr. Transf. Spec. Funct., 16 (1), pp. 81-91
dc.descriptionDe Ridder, H., De Schepper, H., Sommen, F., Taylor series expansion in discrete Clifford analysis (2014) Complex Anal. Oper. Theory, 8 (2), pp. 485-511
dc.descriptionDi Bucchianico, A., Loeb, D.E., Rota, G.-C., Umbral calculus in Hilbert space (1998) Mathematical Essays in Honor of Gian-Carlo Rota, pp. 213-238. , B. Sagan, R.P. Stanley, Birkhäuser Boston
dc.descriptionDimakis, A., Mueller-Hoissen, F., Striker, T., Umbral calculus, discretization, and quantum mechanics on a lattice (1996) J. Phys. A, 29, pp. 6861-6876
dc.descriptionEelbode, D., Monogenic Appell sets as representations of the Heisenberg algebra (2012) Adv. Appl. Cliff. Alg., 22 (4), pp. 1009-1023
dc.descriptionFaustino, N., Kähler, U., Fischer decomposition for difference Dirac operators (2007) Adv. Appl. Cliff. Alg., 17 (1), pp. 37-58
dc.descriptionFaustino, N., Ren, G., (Discrete) Almansi type decompositions: An umbral calculus framework based on osp (1 | 2) symmetries (2011) Math. Methods Appl. Sci., 34 (16), pp. 1961-1979
dc.descriptionFaustino, N., Special functions of hypercomplex variable on the lattice based on SU (1, 1) (2013) SIGMA, 9, p. 065. , 18 pages
dc.descriptionFroyen, S., Brillouin-zone integration by Fourier quadrature: Special points for superlattice and supercell calculations (1989) Phys. Rev. B, 39, pp. 3168-3172
dc.descriptionGagnon, L., Winternitz, P., Lie symmetries of a generalised nonlinear Schrodinger equation: I. The symmetry group and its subgroups (1988) J. Phys. A: Math. Gen., 21 (7), p. 1493
dc.descriptionGürlebeck, K., Sprössig, W., (1997) Quaternionic and Clifford Calculus for Physicists and Engineers, , Wiley Chichester
dc.descriptionGürlebeck, K., Hommel, A., On finite difference Dirac operators and their fundamental solutions (2001) Adv. Appl. Cliff. Alg., 11 (2), pp. 89-106
dc.descriptionHowe, R., Remarks on classical invariant theory (1989) Trans. Am. Math. Soc., 313, pp. 539-570
dc.descriptionKisil, V.V., Polynomial sequences of binomial type and path integrals (2002) Ann. Comb., 6 (1), pp. 45-56
dc.descriptionLvika, R., Complete orthogonal Appell systems for spherical monogenics (2012) Complex Anal. Oper. Theory, 6 (2), pp. 477-489
dc.descriptionLevi, D., Tempesta, P., Winternitz, P., Umbral calculus, difference equations and the discrete Schrödinger equation (2004) J. Math. Phys., 45 (11), pp. 4077-4105
dc.descriptionMalonek, H.R., Tomaz, G., Bernoulli polynomials and Pascal matrices in the context of Clifford analysis (2009) Discrete Appl. Math., 157, pp. 838-847
dc.descriptionRodrigues, W.A., Jr., De Oliveira, E.C., (2007) The Many Faces of Maxwell, Dirac and Einstein Equations: A Clifford Bundle Approach, 722 VOL.. , Springer Heidelberg
dc.descriptionRoman, S., (1984) The Umbral Calculus, , Academic Press Orlando, FL
dc.descriptionRothe, H.J., (2005) Lattice Gauge Theories: An Introduction, 74 VOL.. , World Scientific Singapore
dc.descriptionSrivastava, H.M., Ben Cheikh, Y., Orthogonality of some polynomial sets via quasi-monomiality (2003) Appl. Math. Comput., 141 (2), pp. 415-425
dc.descriptionSmirnov, Y., Turbiner, A., Lie algebraic discretization of differential equations (1995) Modern Phys. Lett. A, 10 (24), pp. 1795-1802
dc.descriptionSmirnov, Y., Turbiner, A., Errata: Lie algebraic discretization of differential equations (1995) Modern Phys. Lett. A, 10 (40), p. 3139
dc.descriptionSommen, F., An algebra of abstract vector variables (1997) Portugaliae Math., 54 (3), pp. 287-310
dc.descriptionTurbiner, A.V., Ushveridze, A.G., Spectral singularities and quasi-exactly solvable quantal problem (1987) Phys. Lett. A, 126 (3), pp. 181-183
dc.descriptionVinet, L., Zhedanov, A., Automorphisms of the Heisenberg-Weyl algebra and d-orthogonal polynomials (2009) J. Math. Phys., 50, p. 033511
dc.descriptionWigner, E.P., Do the equations of motion determine the quantum mechanical commutation relations? (1950) Phys. Rev., 77, pp. 711-712
dc.languageen
dc.publisherElsevier Inc.
dc.relationApplied Mathematics and Computation
dc.rightsfechado
dc.sourceScopus
dc.titleClasses Of Hypercomplex Polynomials Of Discrete Variable Based On The Quasi-monomiality Principle
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución