Artículos de revistas
Limit Cycles For M-piecewise Discontinuous Polynomial Liénard Differential Equations
Registro en:
Zeitschrift Fur Angewandte Mathematik Und Physik. Birkhauser Verlag Ag, v. 66, n. 1, p. 51 - 66, 2014.
442275
10.1007/s00033-013-0393-2
2-s2.0-84922338089
Autor
Llibre J.
Teixeira M.A.
Institución
Resumen
We provide lower bounds for the maximum number of limit cycles for the m-piecewise discontinuous polynomial differential equations (Formula Precented.), (Formula Presented.), where the zero set of the function sgn(gm(x, y)) with m = 2, 4, 6,.. is the product of m/2 straight lines passing through the origin of coordinates dividing the plane into sectors of angle 2π/m, and sgn(z) denotes the sign function. 66 1 51 66 Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1964) Washington Andronov, A.A., Vitt, A.A., Khaikin, S.E., (1966) Theory of Ocillators, , Dover, New York: Anosov, D.V., On stability of equilibrium states of relay systems (Russian) (1959) Avtomatika i Telemehanika, 20, pp. 135-149 Barbashin, E.A., (1970) Introduction to the theory of stability. Translated from the Russian by Transcripta Service, London. Edited by T, , Lukes Wolters–Noordhoff Publishing, Groningen: Berezin, I.S., Zhidkov, N.P., (1964) Computing Methods, vol. II, , Pergamon Press, Oxford: Brogliato, B., Nonsmooth impact mechanics. Models, dynamics and control (1996) Lecture Notes in Control and Information Sciences, 220. , Springer, London Ltd., London: Buica, A., Llibre, J., Averaging methods for finding periodic orbits via Brouwer degree (2004) Bulletin des Sciences Mathemàtiques, 128, pp. 7-22 De Maesschalck P., Dumortier F.: Classical Liénard equation of degree n ≥ 6 can have (Formula Presented.) limit cycles. J. Differ. Equ. 250, 2162–2176 (2011)di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., (2008) Piecewise-Smooth Dynamical Systems: Theory and Applications, , Springer, Berlin: Dumortier, F., Panazzolo, D., Roussarie, R., More limit cycles than expected in Liénard equations (2007) Proc. Am. Math. Soc, 135, pp. 1895-1904 Écalle, J., (1992) Introduction Aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac, , Hermann, Paris: Guckenheimer, J., Holmes, P., (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vectors Fields, , Springer, Berlin: Henry, P., Differential equations with discontinuous right-hand side for planning procedures (1972) J. Econ. Theory, 4, pp. 545-551 Hilbert, D., Mathematische Probleme. Lecture, Second Internat (1902) Congr. Math. (Paris, 1900) (Nachr. Ges. Wiss. Göttingen) Math. Phys. KL. pp. 253–297 (1900) English transl., Bull. American Mathematical Society, 8, pp. 437-479 Ilyashenko, Y., Finiteness Theorems for Limit Cycles. Translations of Math. Monographs, vol. 94 (1991) American Mathematical Society Ilyashenko, Y., Panov, A., Some upper estimates of the number of limit cycles of planar vector fields with applications to Liénard equations. Moscow (2001) Math. J, 1, pp. 583-599 Kunze, M., Kupper, T., Qualitative bifurcation analysis of a non-smooth friction-oscillator model (1997) Z. Angew. Math. Phys, 48, pp. 87-101 Li, C., Llibre, J., Uniqueness of limit cycle for Liénard equations of degree four (2012) J. Differ. Equ, 252, pp. 3142-3162 Lins, A., de Melo, W., Pugh, C.C., (1977) On Liénard’s Equation. Lecture Notes in Mathematics, vol. 597, pp. 335–357, , Springer, Berlin: Llibre, J., Novaes, D.D., Teixeira, M.A., Averaging methods for studying the periodic orbits of discontinuous differential systems (2012) IMECC Technical Report, p. 8 Llibre, J., Rodríguez, G., Configurations of limit cycles and planar polynomial vector fields (2004) J. Differ. Equ, 198, pp. 374-380 Llibre, J., Swirszcz, G., On the limit cycles of polynomial vector fields (2011) Dyn. Contin. Discrete Impuls. Syst, 18, pp. 203-214 Makarenkov, O., Lamb, J.S.W., Dynamics and bifurcations of nonsmooth systems: a survey (2012) Phys. D, 241, pp. 1826-1844 Sanders, J., Vehrulst, F., (1985) Averaging Method in Nonlinear Dynamical Systems, Applied Mathematical Sciences, vol. 59, , Springer, Berlin: Smale, S., Mathematical problems for the next century (1998) Math. Intell, 20, pp. 7-15 Teixeira, M.A., Perturbation theory for non-smooth systems (2009) Encyclopedia of Complexity and Systems Science, pp. 6697-6709. , Meyers R.A., Gaeta G., (eds), Springer, New York: Vehrulst, F., (1996) Nonlinear Differential Equations and Dynamical Systems, Universitext, , Springer, Berlin: