dc.creatorLlibre J.
dc.creatorTeixeira M.A.
dc.date2014
dc.date2015-06-25T18:01:09Z
dc.date2015-11-26T15:02:54Z
dc.date2015-06-25T18:01:09Z
dc.date2015-11-26T15:02:54Z
dc.date.accessioned2018-03-28T22:13:47Z
dc.date.available2018-03-28T22:13:47Z
dc.identifier
dc.identifierZeitschrift Fur Angewandte Mathematik Und Physik. Birkhauser Verlag Ag, v. 66, n. 1, p. 51 - 66, 2014.
dc.identifier442275
dc.identifier10.1007/s00033-013-0393-2
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84922338089&partnerID=40&md5=c0db97c936b8c877098c1b028e00ef40
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87510
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87510
dc.identifier2-s2.0-84922338089
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256488
dc.descriptionWe provide lower bounds for the maximum number of limit cycles for the m-piecewise discontinuous polynomial differential equations (Formula Precented.), (Formula Presented.), where the zero set of the function sgn(gm(x, y)) with m = 2, 4, 6,.. is the product of m/2 straight lines passing through the origin of coordinates dividing the plane into sectors of angle 2π/m, and sgn(z) denotes the sign function.
dc.description66
dc.description1
dc.description51
dc.description66
dc.descriptionAbramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1964) Washington
dc.descriptionAndronov, A.A., Vitt, A.A., Khaikin, S.E., (1966) Theory of Ocillators, , Dover, New York:
dc.descriptionAnosov, D.V., On stability of equilibrium states of relay systems (Russian) (1959) Avtomatika i Telemehanika, 20, pp. 135-149
dc.descriptionBarbashin, E.A., (1970) Introduction to the theory of stability. Translated from the Russian by Transcripta Service, London. Edited by T, , Lukes Wolters–Noordhoff Publishing, Groningen:
dc.descriptionBerezin, I.S., Zhidkov, N.P., (1964) Computing Methods, vol. II, , Pergamon Press, Oxford:
dc.descriptionBrogliato, B., Nonsmooth impact mechanics. Models, dynamics and control (1996) Lecture Notes in Control and Information Sciences, 220. , Springer, London Ltd., London:
dc.descriptionBuica, A., Llibre, J., Averaging methods for finding periodic orbits via Brouwer degree (2004) Bulletin des Sciences Mathemàtiques, 128, pp. 7-22
dc.descriptionDe Maesschalck P., Dumortier F.: Classical Liénard equation of degree n ≥ 6 can have (Formula Presented.) limit cycles. J. Differ. Equ. 250, 2162–2176 (2011)di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., (2008) Piecewise-Smooth Dynamical Systems: Theory and Applications, , Springer, Berlin:
dc.descriptionDumortier, F., Panazzolo, D., Roussarie, R., More limit cycles than expected in Liénard equations (2007) Proc. Am. Math. Soc, 135, pp. 1895-1904
dc.descriptionÉcalle, J., (1992) Introduction Aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac, , Hermann, Paris:
dc.descriptionGuckenheimer, J., Holmes, P., (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vectors Fields, , Springer, Berlin:
dc.descriptionHenry, P., Differential equations with discontinuous right-hand side for planning procedures (1972) J. Econ. Theory, 4, pp. 545-551
dc.descriptionHilbert, D., Mathematische Probleme. Lecture, Second Internat (1902) Congr. Math. (Paris, 1900) (Nachr. Ges. Wiss. Göttingen) Math. Phys. KL. pp. 253–297 (1900)
dc.descriptionEnglish transl., Bull. American Mathematical Society, 8, pp. 437-479
dc.descriptionIlyashenko, Y., Finiteness Theorems for Limit Cycles. Translations of Math. Monographs, vol. 94 (1991) American Mathematical Society
dc.descriptionIlyashenko, Y., Panov, A., Some upper estimates of the number of limit cycles of planar vector fields with applications to Liénard equations. Moscow (2001) Math. J, 1, pp. 583-599
dc.descriptionKunze, M., Kupper, T., Qualitative bifurcation analysis of a non-smooth friction-oscillator model (1997) Z. Angew. Math. Phys, 48, pp. 87-101
dc.descriptionLi, C., Llibre, J., Uniqueness of limit cycle for Liénard equations of degree four (2012) J. Differ. Equ, 252, pp. 3142-3162
dc.descriptionLins, A., de Melo, W., Pugh, C.C., (1977) On Liénard’s Equation. Lecture Notes in Mathematics, vol. 597, pp. 335–357, , Springer, Berlin:
dc.descriptionLlibre, J., Novaes, D.D., Teixeira, M.A., Averaging methods for studying the periodic orbits of discontinuous differential systems (2012) IMECC Technical Report, p. 8
dc.descriptionLlibre, J., Rodríguez, G., Configurations of limit cycles and planar polynomial vector fields (2004) J. Differ. Equ, 198, pp. 374-380
dc.descriptionLlibre, J., Swirszcz, G., On the limit cycles of polynomial vector fields (2011) Dyn. Contin. Discrete Impuls. Syst, 18, pp. 203-214
dc.descriptionMakarenkov, O., Lamb, J.S.W., Dynamics and bifurcations of nonsmooth systems: a survey (2012) Phys. D, 241, pp. 1826-1844
dc.descriptionSanders, J., Vehrulst, F., (1985) Averaging Method in Nonlinear Dynamical Systems, Applied Mathematical Sciences, vol. 59, , Springer, Berlin:
dc.descriptionSmale, S., Mathematical problems for the next century (1998) Math. Intell, 20, pp. 7-15
dc.descriptionTeixeira, M.A., Perturbation theory for non-smooth systems (2009) Encyclopedia of Complexity and Systems Science, pp. 6697-6709. , Meyers R.A., Gaeta G., (eds), Springer, New York:
dc.descriptionVehrulst, F., (1996) Nonlinear Differential Equations and Dynamical Systems, Universitext, , Springer, Berlin:
dc.languageen
dc.publisherBirkhauser Verlag AG
dc.relationZeitschrift fur Angewandte Mathematik und Physik
dc.rightsfechado
dc.sourceScopus
dc.titleLimit Cycles For M-piecewise Discontinuous Polynomial Liénard Differential Equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución