dc.creator | Llibre J. | |
dc.creator | Teixeira M.A. | |
dc.date | 2014 | |
dc.date | 2015-06-25T18:01:09Z | |
dc.date | 2015-11-26T15:02:54Z | |
dc.date | 2015-06-25T18:01:09Z | |
dc.date | 2015-11-26T15:02:54Z | |
dc.date.accessioned | 2018-03-28T22:13:47Z | |
dc.date.available | 2018-03-28T22:13:47Z | |
dc.identifier | | |
dc.identifier | Zeitschrift Fur Angewandte Mathematik Und Physik. Birkhauser Verlag Ag, v. 66, n. 1, p. 51 - 66, 2014. | |
dc.identifier | 442275 | |
dc.identifier | 10.1007/s00033-013-0393-2 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84922338089&partnerID=40&md5=c0db97c936b8c877098c1b028e00ef40 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/87510 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/87510 | |
dc.identifier | 2-s2.0-84922338089 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1256488 | |
dc.description | We provide lower bounds for the maximum number of limit cycles for the m-piecewise discontinuous polynomial differential equations (Formula Precented.), (Formula Presented.), where the zero set of the function sgn(gm(x, y)) with m = 2, 4, 6,.. is the product of m/2 straight lines passing through the origin of coordinates dividing the plane into sectors of angle 2π/m, and sgn(z) denotes the sign function. | |
dc.description | 66 | |
dc.description | 1 | |
dc.description | 51 | |
dc.description | 66 | |
dc.description | Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1964) Washington | |
dc.description | Andronov, A.A., Vitt, A.A., Khaikin, S.E., (1966) Theory of Ocillators, , Dover, New York: | |
dc.description | Anosov, D.V., On stability of equilibrium states of relay systems (Russian) (1959) Avtomatika i Telemehanika, 20, pp. 135-149 | |
dc.description | Barbashin, E.A., (1970) Introduction to the theory of stability. Translated from the Russian by Transcripta Service, London. Edited by T, , Lukes Wolters–Noordhoff Publishing, Groningen: | |
dc.description | Berezin, I.S., Zhidkov, N.P., (1964) Computing Methods, vol. II, , Pergamon Press, Oxford: | |
dc.description | Brogliato, B., Nonsmooth impact mechanics. Models, dynamics and control (1996) Lecture Notes in Control and Information Sciences, 220. , Springer, London Ltd., London: | |
dc.description | Buica, A., Llibre, J., Averaging methods for finding periodic orbits via Brouwer degree (2004) Bulletin des Sciences Mathemàtiques, 128, pp. 7-22 | |
dc.description | De Maesschalck P., Dumortier F.: Classical Liénard equation of degree n ≥ 6 can have (Formula Presented.) limit cycles. J. Differ. Equ. 250, 2162–2176 (2011)di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P., (2008) Piecewise-Smooth Dynamical Systems: Theory and Applications, , Springer, Berlin: | |
dc.description | Dumortier, F., Panazzolo, D., Roussarie, R., More limit cycles than expected in Liénard equations (2007) Proc. Am. Math. Soc, 135, pp. 1895-1904 | |
dc.description | Écalle, J., (1992) Introduction Aux Fonctions Analysables et Preuve Constructive de la Conjecture de Dulac, , Hermann, Paris: | |
dc.description | Guckenheimer, J., Holmes, P., (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vectors Fields, , Springer, Berlin: | |
dc.description | Henry, P., Differential equations with discontinuous right-hand side for planning procedures (1972) J. Econ. Theory, 4, pp. 545-551 | |
dc.description | Hilbert, D., Mathematische Probleme. Lecture, Second Internat (1902) Congr. Math. (Paris, 1900) (Nachr. Ges. Wiss. Göttingen) Math. Phys. KL. pp. 253–297 (1900) | |
dc.description | English transl., Bull. American Mathematical Society, 8, pp. 437-479 | |
dc.description | Ilyashenko, Y., Finiteness Theorems for Limit Cycles. Translations of Math. Monographs, vol. 94 (1991) American Mathematical Society | |
dc.description | Ilyashenko, Y., Panov, A., Some upper estimates of the number of limit cycles of planar vector fields with applications to Liénard equations. Moscow (2001) Math. J, 1, pp. 583-599 | |
dc.description | Kunze, M., Kupper, T., Qualitative bifurcation analysis of a non-smooth friction-oscillator model (1997) Z. Angew. Math. Phys, 48, pp. 87-101 | |
dc.description | Li, C., Llibre, J., Uniqueness of limit cycle for Liénard equations of degree four (2012) J. Differ. Equ, 252, pp. 3142-3162 | |
dc.description | Lins, A., de Melo, W., Pugh, C.C., (1977) On Liénard’s Equation. Lecture Notes in Mathematics, vol. 597, pp. 335–357, , Springer, Berlin: | |
dc.description | Llibre, J., Novaes, D.D., Teixeira, M.A., Averaging methods for studying the periodic orbits of discontinuous differential systems (2012) IMECC Technical Report, p. 8 | |
dc.description | Llibre, J., Rodríguez, G., Configurations of limit cycles and planar polynomial vector fields (2004) J. Differ. Equ, 198, pp. 374-380 | |
dc.description | Llibre, J., Swirszcz, G., On the limit cycles of polynomial vector fields (2011) Dyn. Contin. Discrete Impuls. Syst, 18, pp. 203-214 | |
dc.description | Makarenkov, O., Lamb, J.S.W., Dynamics and bifurcations of nonsmooth systems: a survey (2012) Phys. D, 241, pp. 1826-1844 | |
dc.description | Sanders, J., Vehrulst, F., (1985) Averaging Method in Nonlinear Dynamical Systems, Applied Mathematical Sciences, vol. 59, , Springer, Berlin: | |
dc.description | Smale, S., Mathematical problems for the next century (1998) Math. Intell, 20, pp. 7-15 | |
dc.description | Teixeira, M.A., Perturbation theory for non-smooth systems (2009) Encyclopedia of Complexity and Systems Science, pp. 6697-6709. , Meyers R.A., Gaeta G., (eds), Springer, New York: | |
dc.description | Vehrulst, F., (1996) Nonlinear Differential Equations and Dynamical Systems, Universitext, , Springer, Berlin: | |
dc.language | en | |
dc.publisher | Birkhauser Verlag AG | |
dc.relation | Zeitschrift fur Angewandte Mathematik und Physik | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Limit Cycles For M-piecewise Discontinuous Polynomial Liénard Differential Equations | |
dc.type | Artículos de revistas | |