Artículos de revistas
Polynomizing: Logic Inference In Polynomial Format And The Legacy Of Boole
Registro en:
3540719857; 9783540719854
Studies In Computational Intelligence. , v. 64, n. , p. 349 - 364, 2007.
1860949X
10.1007/978-3-540-71986-1_20
2-s2.0-34347371449
Autor
Carnielli W.
Institución
Resumen
Polynomizing is a term that intends to describe the uses of polynomiallike representations as a reasoning strategy and as a tool for scientific heuristics. I show how proof-theory and semantics for classical and several non-classical logics can be approached from this perspective, and discuss the assessment of this prospect, in particular to recover certain ideas of George Boole in unifying logic, algebra and the differential calculus. © 2007 Springer-Verlag Berlin Heidelberg. 64
349 364 Agudelo, J.C., Carnielli, W.A.: Quantum algorithms, paraconsistent computation and Deutsch's problem. In Bhanu Prasad et al., eds.: Proceedings of the 2nd Indian International Conference on Artificial Intelligence, Pune, India, December 20-22 (2005) IICAI 2005, 1609-1628. Pre-print available from CLE e-Prints 5(10) (2005) ftp://logica.cle.unicamp.br/pub/e-prints/ MTPs-CompQuant%28Ing%29.pdfAhmed, T.S., Algebraic logic, where does it stand today? (2005) Bull. Symbolic Logic, 11 (4), pp. 465-516 Beame, P., Impagliazzo, R., Krajicek, J.T., Pitassi, T., Pudlak, P., Lower bounds on Hilbert's Nullstellensatz and propositional proofs (1996) Proceedings of the London Mathematical Society, 73, pp. 1-26 Boole, G., The Mathematical Analysis of Logic, Being an Essay Towards a Calculus of Deductive Reasoning (1847) Macmillan, Barclay and Macmillan, , London , Reprinted by Basil Blackwell, Oxford, 1965 Boole, G., The calculus of logic (1848) Cambridge and Dublin Math. Journal, 3, pp. 183-198 Boole, G., (1854) An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities, , Walton and Maberley, London , Reprinted by Dover Books, New York, 1954 Boole, G., Calculus of Finite Differences (1970) Chelsea Publishing (originally published in 1860), , 5th Edition Burris, S.: The laws of Boole's thought. Unpublished (2002), Preprint at http://www.thoralf.uwaterloo.ca/htdocs/MYWORKS/ PREPRINTS/aboole.pdfCaleiro, C., Carnielli, W.A., Coniglio, M.E., Marcos, J.: Two's company: The humbug of many logical values. In Béziau J.-Y., Birkhäuser, eds.: Logica Universalis. Verlag, Basel, Switzerland (2005) 169-189 Preprint available at http:// wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdfCaicedo, X., Martín, A., Completud de dos cálculos lógicos de Leibniz (2001) Theoria, 16 (3), pp. 539-558 Carnielli, W.A., Systematization of the finite many-valued logics through the method of tableaux (1987) The Journal of Symbolic Logic, 52 (2), pp. 473-493 Carnielli, W.A., A polynomial proof system for Lukasiewicz logics (2001) Second Principia International Symposium, , August 6-10, Florianpolis, SC, Brazil Carnielli, W.A.: Polynomial ring calculus for many-valued logics. Proceedings of the 35th International Symposium on Multiple-Valued Logic. IEEE Computer Society. Calgary, Canad. IEEE Computer Society, pp. 20-25, 2005. Available from CLE e-Prints 5(3) (2005) at http://www.cle.unicamp.br/e-prints/vol_5,n_3,2005.htmlCarnielli, W.A., Coniglio, M.E., Polynomial formulations of non-deterministic semantics for logics of formal inconsistency (2006), ManuscriptClegg, M., Edmonds, J., Impagliazzo, R., Using the Gröbner bases algorithm to find proofs of unsatisfiability (1996) Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 174-183. , Philadelphia, Pennsylvania, USA Corcoran, J., Aristotle's Prior Analytics and Boole's Laws of Thought (2003) Hist. and Ph. of Logic, 24, pp. 261-288 Dummett, M., Review of "Studies in Logic and Probability by George Boole". Rhees, R., Open Court, 1952 (1959) J. of Symb. Log, 24, pp. 203-209 Eves, H., (1990) An Introduction to the History of Mathematics, , 6th ed, Saunders, New York Euler, L., Variae observations circa series infinitas (1737) Commentarii academiae scientiarum Petropolitanae, 9, pp. 160-188 Reprinted in Opera Omnia, Series I 14, Birkhuser, 216-244. Available on line at www.EulerArchive.orgGiusti, E.B., (1980) Cavalieri and the Theory of Indivisibles, , Cremonese, Roma Gottwald, S., (2001) A Treatise on Many-Valued Logics, Studies in Logic and Computation, , Research Studies Press Ltd. Hertfordshire, England Hailperin, T., (1986) Boole's Logic and Probability: A Critical Exposititon from the Standpoint of Contemporary Algebra, Logic, and Probability Theory, , North-Holland Studies In Logic and the Foundations of Mathematics Lloyd, G., Finite and infinite in Greece and China (1996) Chinese Science, 13, pp. 11-34 MacHale, D., (1985) George Boole: His Life and Work, , Boole Press Mates, B., (1953) Stoic Logic, , University of California Press, Berkeley, CA Martzloff, J.-C., (1997) A History of Chinese Mathematics, , Springer-Verlag, Berlin Roy, R., The discovery of the series formula for π by Leibniz, Gregory and Nilakantha (1990) Mathematics Magazine, 63 (5), pp. 291-306 Schroeder, M., A brief history of the notation of Boole's algebra (1997) Nordic Journal of Philosophical Logic, 2 (1), pp. 41-62 Schröder, E., (1891) Vorlesungen über die Algebra der Logik (exakte Logik), 2, p. 1. , B.G. Teubner, Leipzig, reprinted by Chelsea, New York, 1966 Stone, M.H., The theory of representations for boolean algebras (1936) Trans. of the Amer. Math. Soc, 40, pp. 37-111 Styazhkin, M.I., (1969) History of Mathematical Logic from Leibniz to Peano, , The M.I.T. Press, Cambridge Wu, J.-Z., Tan, H.-Y., Li, Y., An algebraic method to decide the deduction problem in many-valued logics (1998) Journal of Applied Non-Classical Logics, 8 (4), pp. 353-360 Weyl, H., (1932) God and the Universe: The Open World, , Yale University Press Reprinted as, (1989) The Open World, , by Ox Bow Press Zhegalkin, I.I., O tekhnyke vychyslenyi predlozhenyi v symbolytscheskoi logykye (On a technique of evaluation of propositions in symbolic logic) (1927) Matematicheskii Sbornik, 34 (1), pp. 9-28. , in Russian