dc.creatorCarnielli W.
dc.date2007
dc.date2015-06-30T18:38:11Z
dc.date2015-11-26T15:01:44Z
dc.date2015-06-30T18:38:11Z
dc.date2015-11-26T15:01:44Z
dc.date.accessioned2018-03-28T22:12:43Z
dc.date.available2018-03-28T22:12:43Z
dc.identifier3540719857; 9783540719854
dc.identifierStudies In Computational Intelligence. , v. 64, n. , p. 349 - 364, 2007.
dc.identifier1860949X
dc.identifier10.1007/978-3-540-71986-1_20
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-34347371449&partnerID=40&md5=2ef3b7f2acb9239e15377eb5a34cc339
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104104
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104104
dc.identifier2-s2.0-34347371449
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256342
dc.descriptionPolynomizing is a term that intends to describe the uses of polynomiallike representations as a reasoning strategy and as a tool for scientific heuristics. I show how proof-theory and semantics for classical and several non-classical logics can be approached from this perspective, and discuss the assessment of this prospect, in particular to recover certain ideas of George Boole in unifying logic, algebra and the differential calculus. © 2007 Springer-Verlag Berlin Heidelberg.
dc.description64
dc.description
dc.description349
dc.description364
dc.descriptionAgudelo, J.C., Carnielli, W.A.: Quantum algorithms, paraconsistent computation and Deutsch's problem. In Bhanu Prasad et al., eds.: Proceedings of the 2nd Indian International Conference on Artificial Intelligence, Pune, India, December 20-22 (2005) IICAI 2005, 1609-1628. Pre-print available from CLE e-Prints 5(10) (2005) ftp://logica.cle.unicamp.br/pub/e-prints/ MTPs-CompQuant%28Ing%29.pdfAhmed, T.S., Algebraic logic, where does it stand today? (2005) Bull. Symbolic Logic, 11 (4), pp. 465-516
dc.descriptionBeame, P., Impagliazzo, R., Krajicek, J.T., Pitassi, T., Pudlak, P., Lower bounds on Hilbert's Nullstellensatz and propositional proofs (1996) Proceedings of the London Mathematical Society, 73, pp. 1-26
dc.descriptionBoole, G., The Mathematical Analysis of Logic, Being an Essay Towards a Calculus of Deductive Reasoning (1847) Macmillan, Barclay and Macmillan, , London , Reprinted by Basil Blackwell, Oxford, 1965
dc.descriptionBoole, G., The calculus of logic (1848) Cambridge and Dublin Math. Journal, 3, pp. 183-198
dc.descriptionBoole, G., (1854) An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities, , Walton and Maberley, London , Reprinted by Dover Books, New York, 1954
dc.descriptionBoole, G., Calculus of Finite Differences (1970) Chelsea Publishing (originally published in 1860), , 5th Edition
dc.descriptionBurris, S.: The laws of Boole's thought. Unpublished (2002), Preprint at http://www.thoralf.uwaterloo.ca/htdocs/MYWORKS/ PREPRINTS/aboole.pdfCaleiro, C., Carnielli, W.A., Coniglio, M.E., Marcos, J.: Two's company: The humbug of many logical values. In Béziau J.-Y., Birkhäuser, eds.: Logica Universalis. Verlag, Basel, Switzerland (2005) 169-189 Preprint available at http:// wslc.math.ist.utl.pt/ftp/pub/CaleiroC/05-CCCM-dyadic.pdfCaicedo, X., Martín, A., Completud de dos cálculos lógicos de Leibniz (2001) Theoria, 16 (3), pp. 539-558
dc.descriptionCarnielli, W.A., Systematization of the finite many-valued logics through the method of tableaux (1987) The Journal of Symbolic Logic, 52 (2), pp. 473-493
dc.descriptionCarnielli, W.A., A polynomial proof system for Lukasiewicz logics (2001) Second Principia International Symposium, , August 6-10, Florianpolis, SC, Brazil
dc.descriptionCarnielli, W.A.: Polynomial ring calculus for many-valued logics. Proceedings of the 35th International Symposium on Multiple-Valued Logic. IEEE Computer Society. Calgary, Canad. IEEE Computer Society, pp. 20-25, 2005. Available from CLE e-Prints 5(3) (2005) at http://www.cle.unicamp.br/e-prints/vol_5,n_3,2005.htmlCarnielli, W.A., Coniglio, M.E., Polynomial formulations of non-deterministic semantics for logics of formal inconsistency (2006), ManuscriptClegg, M., Edmonds, J., Impagliazzo, R., Using the Gröbner bases algorithm to find proofs of unsatisfiability (1996) Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 174-183. , Philadelphia, Pennsylvania, USA
dc.descriptionCorcoran, J., Aristotle's Prior Analytics and Boole's Laws of Thought (2003) Hist. and Ph. of Logic, 24, pp. 261-288
dc.descriptionDummett, M., Review of "Studies in Logic and Probability by George Boole". Rhees, R., Open Court, 1952 (1959) J. of Symb. Log, 24, pp. 203-209
dc.descriptionEves, H., (1990) An Introduction to the History of Mathematics, , 6th ed, Saunders, New York
dc.descriptionEuler, L., Variae observations circa series infinitas (1737) Commentarii academiae scientiarum Petropolitanae, 9, pp. 160-188
dc.descriptionReprinted in Opera Omnia, Series I 14, Birkhuser, 216-244. Available on line at www.EulerArchive.orgGiusti, E.B., (1980) Cavalieri and the Theory of Indivisibles, , Cremonese, Roma
dc.descriptionGottwald, S., (2001) A Treatise on Many-Valued Logics, Studies in Logic and Computation, , Research Studies Press Ltd. Hertfordshire, England
dc.descriptionHailperin, T., (1986) Boole's Logic and Probability: A Critical Exposititon from the Standpoint of Contemporary Algebra, Logic, and Probability Theory, , North-Holland Studies In Logic and the Foundations of Mathematics
dc.descriptionLloyd, G., Finite and infinite in Greece and China (1996) Chinese Science, 13, pp. 11-34
dc.descriptionMacHale, D., (1985) George Boole: His Life and Work, , Boole Press
dc.descriptionMates, B., (1953) Stoic Logic, , University of California Press, Berkeley, CA
dc.descriptionMartzloff, J.-C., (1997) A History of Chinese Mathematics, , Springer-Verlag, Berlin
dc.descriptionRoy, R., The discovery of the series formula for π by Leibniz, Gregory and Nilakantha (1990) Mathematics Magazine, 63 (5), pp. 291-306
dc.descriptionSchroeder, M., A brief history of the notation of Boole's algebra (1997) Nordic Journal of Philosophical Logic, 2 (1), pp. 41-62
dc.descriptionSchröder, E., (1891) Vorlesungen über die Algebra der Logik (exakte Logik), 2, p. 1. , B.G. Teubner, Leipzig, reprinted by Chelsea, New York, 1966
dc.descriptionStone, M.H., The theory of representations for boolean algebras (1936) Trans. of the Amer. Math. Soc, 40, pp. 37-111
dc.descriptionStyazhkin, M.I., (1969) History of Mathematical Logic from Leibniz to Peano, , The M.I.T. Press, Cambridge
dc.descriptionWu, J.-Z., Tan, H.-Y., Li, Y., An algebraic method to decide the deduction problem in many-valued logics (1998) Journal of Applied Non-Classical Logics, 8 (4), pp. 353-360
dc.descriptionWeyl, H., (1932) God and the Universe: The Open World, , Yale University Press
dc.descriptionReprinted as, (1989) The Open World, , by Ox Bow Press
dc.descriptionZhegalkin, I.I., O tekhnyke vychyslenyi predlozhenyi v symbolytscheskoi logykye (On a technique of evaluation of propositions in symbolic logic) (1927) Matematicheskii Sbornik, 34 (1), pp. 9-28. , in Russian
dc.languageen
dc.publisher
dc.relationStudies in Computational Intelligence
dc.rightsfechado
dc.sourceScopus
dc.titlePolynomizing: Logic Inference In Polynomial Format And The Legacy Of Boole
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución