Artículos de revistas
Potassium Metasomatism Of Precambrian Paleosols
Registro en:
Precambrian Research. Elsevier, v. 262, n. , p. 67 - 83, 2015.
3019268
10.1016/j.precamres.2015.02.024
2-s2.0-84924370608
Autor
Novoselov A.A.
de Souza Filho C.R.
Institución
Resumen
Independent of substratum composition, ancient regoliths formed by subaerial weathering are characterized by accumulation of K and other alkaline elements. Potassium enrichment due to the formation of clay-minerals is a trend typically observed in regoliths developed by modern hypergene processes. However, the K content in Precambrian paleosols is much higher than in modern weathering profiles. K-metasomatism affecting buried hypergen targets is a possible mechanism for K accumulation. A novel reaction-transport dissolution-precipitation model designed as part of this work proved able to reproduce many essential features of post-burial alterations of a subaerial weathering profile formed on basaltic rocks, including potassium enrichment, dehydration, compaction and pore filling that impacted the buried regolith. The phenomena of preservation of the primary basaltic structure, the apparent selective alteration of soil levels and immobility of Al, Ti and P could be explained by the model. 262
67 83 Aagaard, P., Egeberg, P.K., Saigal, G.C., Morad, S., Bjørlykke, K., Diagenetic albitization of detrital K-feldspars in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway: II. Formation water chemistry and kinetic considerations (1990) J. Sedim. Petrol., 60, pp. 575-581 Abercrombie, H.J., Hutcheon, I.E., Bloch, J.D., Caritat, P., Silica activity and the smectite-illite reaction (1994) Geology, 22, pp. 539-542 Andreani, M., Mével, C., Boullier, A.M., Escartín, J., Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites (2007) Geochem. Geophys. Geosyst., 38 G (2), p. Q02012 Alekseyev, V.A., Equations for the dissolution reaction rates of montmorillonite, illite, and chlorite (2007) Geochem. Int., 45 (8), pp. 770-780 Alekseev, V.A., Medvedeva, L.S., Prisyagina, N.I., Meshalkin, S.S., Balabin, A.I., Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium (1997) Geochim. Cosmochim. Acta, 61 (6), pp. 1125-1142 (2007) PhD thesis, , St. Petersburg Alfimova, N.A., Novoselov, A.A., Matrenichev, V.A., Souza Filho, C.R., Conditions of subaerial weathering of basalts in the Neoarchean and Paleoproterozoic (2014) Precambrian Res., 241, pp. 1-16 Bandstra, J.Z., Brantley, S.L., Data fitting techniques with applications to mineral dissolution kinetics (2008) Kinetics of Water-Rock Interaction, pp. 211-257. , Springer, Berlin, (Chapter 6) Barnes, H.I., Wilkin, R.T., Benning, L.G., (2000) Zeolite Thermodynamics and Kinetics. Report, p. 19. , U.S. Department of Energy Geosciences Research Program Bénézeth, P., Palmer, D.A., Wesolowski, D.J., Dissolution/precipitation kinetics of boehmite and gibbsite: application of a pH-relaxation technique to study near-equilibrium rates (2008) Geochim. Cosmochim. Acta, 71, pp. 2429-2453 Berner, E.K., Berner, R.A., (1996) Global Environment: Water, Air, and Geochemical Cycles, , Prentice Hall, Upper Saddle River, NJ Bird, D.K., Schiffman, P., Elders, W.A., Williams, A.E., (1984) Econ. Geol., 79, pp. 671-695 Bjørlykke, K., Mo, A., Palm, E., Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions (1988) Mar. Pet. Geol., 5, pp. 338-351 Brantley, S.L., Kinetics of mineral dissolution (2008) Kinetics of Water-Rock Interaction, pp. 151-210. , Springer, Berlin, (Chapter 5) Brimhall, G.H., Chadwick, O.A., Lewis, C.J., Compston, W., Williams, I.S., Danti, K.J., Dietrich, W.E., Bratt, J., Deformational mass transport and invasive processes in soil evolution (1991) Science, 255, pp. 695-702 Crowe, S.A., Paris, G., Katsev, S., Jones, C.A., Kim, S.T., Zerkle, A.L., Nomosatryo, S., Canfield, D.E., Sulfate was a trace constituent of Archean seawater (2014) Science, 346 (6210), pp. 735-739 Deer, A., Howie, R., Wise, W.S., Zussman, J., (2004) Rock Forming Minerals. Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites, 4 B. , The Geological Society, London De Ronde, C.E.J., Channer, D.M., De, R., Faure, K., Bray, C.J., Spooner, E.T.C., Fluid chemistry of the Archean seafloor hydrothermal vents: implications for the composition of circa 3.2 Ga seawater (1997) Geochim. Cosmochim. Acta, 61, pp. 4025-4042 Devidal, J.L., Schott, J., Dandurand, J.L., An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150°C, 40 bars, and pH 2, 6.8, and 7.8 (1997) Geochim. Cosmochim. Acta, 61 (24), pp. 5165-5186 Drever, J.I., (1997) The Geochemistry of Natural Waters: Surface and Groundwater Environments, p. 436. , Prentice Hall, Upper Saddle River, NJ Driese, S.G., Jirsa, M.A., Ren, M., Brantley, S.L., Sheldon, N.D., Parker, D., Schmitz, M., Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry (2011) Precambrian Res., 189, pp. 1-17 Einsele, G., (2000) Sedimentary Basins. Evolution, Facies, and Sediment Budget, p. 792. , Springer-Verlag, New York Elderfield, H., Wheat, C.G., Mottl, M.J., Monnin, C., Spiro, B., Fluid and geo-chemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge (1999) Earth Planet. Sci. Lett., 172 (1-2), pp. 151-165 Farrow, C.E.G., Mossman, D.J., Geology of Precambrian paleosols at the base of the Huronian Supergroup, Elliot Lake, Ontario, Canada (1988) Precambrian Res., 42, pp. 107-139 Fedo, C.M., Nesbitt, H.W., Young, G.M., Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance (1995) Geology, 23, pp. 921-924 Frape, S.K., Blyth, A., Blomqvist, R., McNutt, R.H., Gascoyne, M., 5.17. Deep fluids in the continents: II. Crystalline rocks (2003) Treatise on Geochemistry, pp. 541-580 Frei, R., Polat, A., Chromium isotope fractionation during oxidative weathering - implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada (2013) Precambrian Res., 224, pp. 434-453 Frost, B.R., Observations on the boundary between zeolite facies and prehnite-pumpellyite facies (1980) Contrib. Mineral. Petrol., 73, pp. 365-373 González-Álvarez, I., Kerrich, R., REE and HFSE mobility due to protracted flow of basinal brines in the mesoproterozoic Belt-Purcell Supergroup, Laurentia (2010) Precambrian Res., 177, pp. 291-307 González-Álvarez, I., Kerrich, R., Weathering intensity in the Mesoproterozoic and modern large-river systems: a comparative study in the Belt-Purcell Supergroup, Canada and USA (2012) Precambrian Res., pp. 174-196 Gorkovetz, V.Y., (1999) Metalogenia of Karelia, p. 340. , Petrozavodsk Habicht, K.S., Gade, M., Thamdrup, B., Berg, P., Canfield, D.E., Calibration of sulfate levels in the Archean Ocean (2002) Science, 298, pp. 2372-2374 Hamade, T., Konhauser, K.O., Raiswell, R., Goldsmith, S., Morris, R.C., Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations (2003) Geology, 31 (1), pp. 35-38 Hardie, L.A., Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas (2003) Geology (Boulder), 31 (9), pp. 785-788 Hanor, J.S., Reactive transport involving rock-buffered fluids of varying salinity (2001) Geochim. Cosmochim. Acta, 65, pp. 3721-3732 (1998) Handbook of Geologic Excursions, pp. 15-16 Herrmann, W., Berry, R.F., MINSQ - a least squares spreadshed method for calculating mineral proportions from whole rock major element analyses (2002) Geochem. Explor. Environ. Anal., 2, pp. 361-368 Hogg, A.J.C., Hamilton, P.J., Macintyre, R.M., Mapping diagenetic fluid flow within a reservoir: K-Ar dating in the Alwyn area (UK North Sea) (1993) Mar. Pet. Geol., 10, pp. 279-294 Holland, H.D., (1984) The Chemical Evolution of the Atmosphere and Oceans, p. 582. , Princeton University Press, Princeton, NJ Holland, H.D., 6.21. The geologic history of seawater (2003) Treatise on Geochemistry, pp. 583-625 Holland, H.D., Why the atmosphere became oxygenated: a proposal (2009) Geochim. Cosmochim. Acta, 73, pp. 5241-5255 Huang, W.L., Stability and kinetics of kaolinite to boehmite conversion under hydrothermal conditions (1993) Chem. Geol., 105 (1-3), pp. 197-214 Jamieson, J.W., Wing, B.A., Farquhar, J., Hannington, M.D., Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore (2012) Nat. Geosci., 6, pp. 61-64 Johnson, J.W., Oelkers, E.H., Helgeson, H.C., SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C (1992) Comput. Geosci., 18, pp. 899-947 Kharaka, Y.K., Hanor, J.S., 5.16. Deep fluids in the continents: I. Sedimentary basins (2003) Treatise on Geochemistry, pp. 1-48 Knauss, G.K., Dibley, M.J., Bourcier, W.L., Shaw, H.F., Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300°C (2001) Appl. Geochem., 16, pp. 1115-1128 Komiya, T., Hirata, T., Kitajima, K., Yamamoto, S., Shibuya, T., Sawaki, Y., Ishikawa, T., Han, J., Evolution of the composition of seawater through geologic time, and its influence on the evolution of life (2008) Gondwana Res., 14, pp. 159-174 Liou, J.G., Maruyama, S., Cho, M., Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism (1985) Mineral. Mag., 49, pp. 321-333 Lowson, R.T., Brown, P.L., Comarmond, M.-C.J., Rajaratnam, G., The kinetics of the dissolution of chlorite as a function of pH 1550 and at 25°C (2005) Geochim. Cosmochim. Acta, 69, pp. 1687-1699 Macfarlane, A.W., Holland, H.D., The timing of alkali metasomatism in paleosols (1991) Can. Mineral., 29, pp. 1043-1050 Macfarlane, A.W., Danielson, A., Holland, H.D., Geology and major and trace element chemistry of late Archean weathering profiles in the Fortescue group, western Australia: implications for atmospheric PO2 (1994) Precambrian Res., 65, pp. 297-317 Maher, K., The dependence of chemical weathering rates on fluid residence time (2010) Earth Planet. Sci. Lett., 294 (1-2), pp. 101-110 Maynard, J.B., Chemistry of modern soils as a guide to interpreting Precambrian Paleosols (1992) J. Geol., 100, pp. 279-289 Millero, F.J., Feistel, R., Wright, D.G., McDougall, T.J., The composition of standard seawater and the definition of the reference-composition salinity scale (2008) Deep-Sea Res. I, 55, pp. 50-72 Milliken, K.L., 7.07. Late diagenesis and mass transfer in sandstone-shale sequences (2003) Treatise on Geochemistry, pp. 159-160 Mironenko, M.V., Melikhova, T.Y., Zolotov, M.Y., Akinfiev, N.N., (2008) GEOCHEQ_M: Program complex for thermodynamic and kinetic modeling of geochemical processes in rock-water-gas systems. Version 2008. Vestn. Otdelenia nauk o Zemle RAN 26 Mironenko, M.V., Zolotov, M.Y., Equilibrium-kinetic model of water-rock interaction (2012) Geochem. Int., 50 (1), pp. 1-7 Mitchell, R.L., Sheldon, N.D., The 1100 Ma Sturgeon Falls paleosol revisited: implications for Mesoproterozoic weathering environments and atmospheric CO2 levels (2010) Precambrian Res., 183, pp. 738-748 Murakami, T., Sreenivas, B., Sharma, S.D., Sugimori, H., Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics (2011) Geochim. Cosmochim. Acta, 75, pp. 3982-4004 Nedachi, Y., Nedachi, M., Bennett, G., Ohmoto, H., Geochemistry and mineralogy of the 2.45 Ga Pronto paleosols, Ontario, Canada (2005) Chem. Geol., 214, pp. 21-44 Nesbitt, H.W., Young, G.M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites (1982) Nature, 299, pp. 715-717 Nesbitt, H.W., Young, G.M., Formation and diagenesis of weathering profiles (1989) J. Geol., 97, pp. 129-147 Novoselov, A.A., Souza Filho, C.R., CRONO - a code for simulation of chemical weathering (2013) Comput. Geosci., 60, pp. 168-175 Ohmoto, H., Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota (1996) Geology, 24, pp. 1135-1138 Olson, S.L., Kump, L.R., Kasting, J.F., Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases (2013) Chem. Geol., 362, pp. 35-43 Palandri, J.L., Kharaka, Y.K., (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Open-File Rep. 2004-1068, p. 70. , U.S. Geol. Surv., Menlo Park, CA Polat, A., Longstaffe, F., Weisener, C., Fryer, B., Frei, R., Kerrich, R., Extreme element mobility during transformation of Neoarchean (ca. 2.7 Ga) pillow basalts to a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada (2012) Chem. Geol., pp. 145-173 Prasad, N., Roscoe, S.M., Geochemical and mineralogical features of sub-Huronian paleosols, their formation and significance to atmospheric evolution during the Huronian period (1991) Program with Abstract Geological Association of Canada and Mineralogical Association of Canada Joint Annual Meeting, p. 101 Prasad, N., Roscoe, S.M., Evidence of anoxic to oxic atmospheric change during 2.45-2.22Ga from lower and upper sub-Huronian paleosols, Canada (1996) Catena, 27, pp. 105-121 Price, J.R., Velbel, M.A., Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks (2003) Chem. Geol., 2002, pp. 397-416 Rainbird, R.H., Nesbitt, H.W., Donaldson, J.A., Formation and diagenesis of a sub-Huronian saprolith: comparison with a modern weathering profile (1990) J. Geol., 98, pp. 801-822 Raiswell, R., Canfield, D.E., The iron biogeochemical cycle past and present (2012) Geochem. Perspect., 1 (1), p. 222 Renne, P.R., Ernesto, M., Pacca, I.G., Coe, R.S., Glen, J.M., Prévot, M., Perrin, M., The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary (1992) Science, 258, pp. 975-981 Retallack, G.J., Untangling the effects of burial alteration and ancient soil formation (1991) Annu. Rev. Earth Planet. Sci., 19, pp. 183-206 Retallack, G.J., Bestland, E.A., Fremd, T.J., Eocene and Oligocene paleosols of central Oregon (2000) Geol. Soc. Am. Spec. Paper, 344, pp. 1-192 Ries, J.B., Anderson, M.A., Hill, R.T., Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time (2008) Geobiology, 6, pp. 106-119 Rouchon, V., Orberger, B., Origin and mechanisms of K-Si-metasomatism of ca. 3.4-3.3Ga volcaniclastic deposits and implications for Archean seawater evolution: examples from cherts of Kittys Gap (Pilbara craton, Australia) and Msauli (Barberton Greenstone Belt, South Africa) (2008) Precambrian Res., 165, pp. 169-189 Rye, R., Holland, H.D., Paleosols and the evolution of atmospheric oxygen: a critical review (1998) Am. J. Sci., 298, pp. 621-672 Rye, R., Holland, H.D., Geology and geochemistry of paleosols developed on the Hekpoort basalt, Pretoria Group, South Africa (2000) Am. J. Sci., 300, pp. 85-141 Sak, P.B., Fisher, D.M., Gardner, T.W., Murphy, K., Brantley, S.L., Rates of weathering rind formation on Costa Rican basalt (2004) Geochim. Cosmochim. Acta, 68, pp. 1453-1472 Sheldon, N.D., Retallack, G.J., Equation for compaction of paleosols due to burial (2001) Geology, 29 (3), pp. 247-250 Sheldon, N.D., Precambrian paleosols and atmospheric CO2 levels (2006) Precambrian Res., 147, pp. 148-155 Sheldon, N.D., Tabor, N.J., Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols (2009) Earth-Sci. Rev., 95, pp. 1-52 Sheldon, N.D., Causes and consequences of low atmospheric pCO2 in the Late Mesoproterozoic (2013) Chem. Geol., 362, pp. 224-231 Siever, R., The silica cycle in the Precambrian (1992) Geochim. Cosmochim. Acta, 56, pp. 3265-3272 Spear, F.S., (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, p. 799. , Mineralogical Society of America, Washington, DC Stüeken, E.E., Catling, D.C., Buick, R., Contributions to late Archaean sulphur cycling by life on land (2012) Nat. Geosci., 5 (10), pp. 722-725 Sutton, S.J., Maynard, J.B., Multiple alteration events in the history of a sub-Huronian regolith at Lauzon Bay, Ontario (1992) Can. J. Earth Sci., 29, pp. 432-445 Sutton, S.J., Maynard, J.B., Sediment- and basalt-hosted regoliths in the Huronian Supergroup: role of parent lithology in middle Precambrian weathering profiles (1993) Can. J. Earth Sci., 30, pp. 60-75 Thordarson, T., Self, S., Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA (1996) J. Volcanol. Geotherm. Res., 74, pp. 49-73 Utsunomia, S., Murakami, T., Nakama, M., Kasada, T., Iron oxidation state of a 2.45-Byr-old paleosol developed on mafic volcanics (2003) Geochim. Cosmochim. Acta, 67 (2), pp. 213-221 Weiershäuser, L., Spooner, E.T.C., Seafloor hydrothermal fluids, Ben Nevis area, Abitibi Greenstone Belt: implications for Archean (~2.7Ga) seawater properties (2005) Precambrian Res., 138, pp. 89-123 Wiggering, H., Beukes, N.J., Petrography and geochemistry of a 2000-2200-Ma-old hematitic Paleo-alteration profile on Ongeluk basalt of the Transvaal supergroup, Griqualand West, South Africa Original Research Article (1990) Precambrian Res., 46 (3), pp. 241-258 Williams, L.B., Hervig, R.L., Hutcheon, I., Boron isotope geochemistry during diagenesis. Part II: Applications to organic-rich sediments (2001) Geochim. Cosmochim. Acta, 65 (11), pp. 1783-1794 Wolery, T.J., Jove-Colon, C.F., (2007) Qualification of Thermodynamic Data for Geochemical Modeling of Mineral-Water Interactions in Dilute Systems. Report for U.S. Department of Energy. ANL-WIS-GS-000003 REV 01. Las Vegas, p. 412 Yang, X.S., (1997) Mathematical Modeling of Compaction and Diagenesis in Sedimentary Basins, p. 186. , (PhD thesis), University of Oxford Yang, W., Holland, H.D., Rye, R., Evidence for low or no oxygen in the late Archean atmosphere from the ~2.76Ga Mt. Roe #2 paleosol, Western Australia. Part 3: Original Research Article (2002) Geochim. Cosmochim. Acta, 66 (21), pp. 3707-3718 Yang, L., Steefel, C.I., Kaolinite dissolution and precipitation kinetics at 22°C and pH 4 (2008) Geochim. Cosmochim. Acta, 72, pp. 99-116 Yokota, K., Kanzaki, Y., Murukami, T., Weathering model for the quantification of atmospheric oxygen evolution during the Paleoproterozoic (2013) Geochim. Cosmochim. Acta, 117, pp. 332-347 Zbinden, E.A., Holland, H.D., Feakes, C.R., The Sturgeon Falls paleosol and the composition of the atmosphere 1.1Ga BP (1988) Precambrian Res., 42, pp. 141-163 Zolotov, M., Mironenko, Y., Timing of acid weathering on Mars: a kinetic-thermodynamic assessment (2007) J. Geophys. Res., 112, p. E0700