dc.creatorNovoselov A.A.
dc.creatorde Souza Filho C.R.
dc.date2015
dc.date2015-06-25T12:51:10Z
dc.date2015-11-26T14:58:19Z
dc.date2015-06-25T12:51:10Z
dc.date2015-11-26T14:58:19Z
dc.date.accessioned2018-03-28T22:10:02Z
dc.date.available2018-03-28T22:10:02Z
dc.identifier
dc.identifierPrecambrian Research. Elsevier, v. 262, n. , p. 67 - 83, 2015.
dc.identifier3019268
dc.identifier10.1016/j.precamres.2015.02.024
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84924370608&partnerID=40&md5=4a5296331d526e307d52db5cc816a2aa
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85219
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85219
dc.identifier2-s2.0-84924370608
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255832
dc.descriptionIndependent of substratum composition, ancient regoliths formed by subaerial weathering are characterized by accumulation of K and other alkaline elements. Potassium enrichment due to the formation of clay-minerals is a trend typically observed in regoliths developed by modern hypergene processes. However, the K content in Precambrian paleosols is much higher than in modern weathering profiles. K-metasomatism affecting buried hypergen targets is a possible mechanism for K accumulation. A novel reaction-transport dissolution-precipitation model designed as part of this work proved able to reproduce many essential features of post-burial alterations of a subaerial weathering profile formed on basaltic rocks, including potassium enrichment, dehydration, compaction and pore filling that impacted the buried regolith. The phenomena of preservation of the primary basaltic structure, the apparent selective alteration of soil levels and immobility of Al, Ti and P could be explained by the model.
dc.description262
dc.description
dc.description67
dc.description83
dc.descriptionAagaard, P., Egeberg, P.K., Saigal, G.C., Morad, S., Bjørlykke, K., Diagenetic albitization of detrital K-feldspars in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway: II. Formation water chemistry and kinetic considerations (1990) J. Sedim. Petrol., 60, pp. 575-581
dc.descriptionAbercrombie, H.J., Hutcheon, I.E., Bloch, J.D., Caritat, P., Silica activity and the smectite-illite reaction (1994) Geology, 22, pp. 539-542
dc.descriptionAndreani, M., Mével, C., Boullier, A.M., Escartín, J., Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites (2007) Geochem. Geophys. Geosyst., 38 G (2), p. Q02012
dc.descriptionAlekseyev, V.A., Equations for the dissolution reaction rates of montmorillonite, illite, and chlorite (2007) Geochem. Int., 45 (8), pp. 770-780
dc.descriptionAlekseev, V.A., Medvedeva, L.S., Prisyagina, N.I., Meshalkin, S.S., Balabin, A.I., Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium (1997) Geochim. Cosmochim. Acta, 61 (6), pp. 1125-1142
dc.description(2007) PhD thesis, , St. Petersburg
dc.descriptionAlfimova, N.A., Novoselov, A.A., Matrenichev, V.A., Souza Filho, C.R., Conditions of subaerial weathering of basalts in the Neoarchean and Paleoproterozoic (2014) Precambrian Res., 241, pp. 1-16
dc.descriptionBandstra, J.Z., Brantley, S.L., Data fitting techniques with applications to mineral dissolution kinetics (2008) Kinetics of Water-Rock Interaction, pp. 211-257. , Springer, Berlin, (Chapter 6)
dc.descriptionBarnes, H.I., Wilkin, R.T., Benning, L.G., (2000) Zeolite Thermodynamics and Kinetics. Report, p. 19. , U.S. Department of Energy Geosciences Research Program
dc.descriptionBénézeth, P., Palmer, D.A., Wesolowski, D.J., Dissolution/precipitation kinetics of boehmite and gibbsite: application of a pH-relaxation technique to study near-equilibrium rates (2008) Geochim. Cosmochim. Acta, 71, pp. 2429-2453
dc.descriptionBerner, E.K., Berner, R.A., (1996) Global Environment: Water, Air, and Geochemical Cycles, , Prentice Hall, Upper Saddle River, NJ
dc.descriptionBird, D.K., Schiffman, P., Elders, W.A., Williams, A.E., (1984) Econ. Geol., 79, pp. 671-695
dc.descriptionBjørlykke, K., Mo, A., Palm, E., Modelling of thermal convection in sedimentary basins and its relevance to diagenetic reactions (1988) Mar. Pet. Geol., 5, pp. 338-351
dc.descriptionBrantley, S.L., Kinetics of mineral dissolution (2008) Kinetics of Water-Rock Interaction, pp. 151-210. , Springer, Berlin, (Chapter 5)
dc.descriptionBrimhall, G.H., Chadwick, O.A., Lewis, C.J., Compston, W., Williams, I.S., Danti, K.J., Dietrich, W.E., Bratt, J., Deformational mass transport and invasive processes in soil evolution (1991) Science, 255, pp. 695-702
dc.descriptionCrowe, S.A., Paris, G., Katsev, S., Jones, C.A., Kim, S.T., Zerkle, A.L., Nomosatryo, S., Canfield, D.E., Sulfate was a trace constituent of Archean seawater (2014) Science, 346 (6210), pp. 735-739
dc.descriptionDeer, A., Howie, R., Wise, W.S., Zussman, J., (2004) Rock Forming Minerals. Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites, 4 B. , The Geological Society, London
dc.descriptionDe Ronde, C.E.J., Channer, D.M., De, R., Faure, K., Bray, C.J., Spooner, E.T.C., Fluid chemistry of the Archean seafloor hydrothermal vents: implications for the composition of circa 3.2 Ga seawater (1997) Geochim. Cosmochim. Acta, 61, pp. 4025-4042
dc.descriptionDevidal, J.L., Schott, J., Dandurand, J.L., An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150°C, 40 bars, and pH 2, 6.8, and 7.8 (1997) Geochim. Cosmochim. Acta, 61 (24), pp. 5165-5186
dc.descriptionDrever, J.I., (1997) The Geochemistry of Natural Waters: Surface and Groundwater Environments, p. 436. , Prentice Hall, Upper Saddle River, NJ
dc.descriptionDriese, S.G., Jirsa, M.A., Ren, M., Brantley, S.L., Sheldon, N.D., Parker, D., Schmitz, M., Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry (2011) Precambrian Res., 189, pp. 1-17
dc.descriptionEinsele, G., (2000) Sedimentary Basins. Evolution, Facies, and Sediment Budget, p. 792. , Springer-Verlag, New York
dc.descriptionElderfield, H., Wheat, C.G., Mottl, M.J., Monnin, C., Spiro, B., Fluid and geo-chemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge (1999) Earth Planet. Sci. Lett., 172 (1-2), pp. 151-165
dc.descriptionFarrow, C.E.G., Mossman, D.J., Geology of Precambrian paleosols at the base of the Huronian Supergroup, Elliot Lake, Ontario, Canada (1988) Precambrian Res., 42, pp. 107-139
dc.descriptionFedo, C.M., Nesbitt, H.W., Young, G.M., Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance (1995) Geology, 23, pp. 921-924
dc.descriptionFrape, S.K., Blyth, A., Blomqvist, R., McNutt, R.H., Gascoyne, M., 5.17. Deep fluids in the continents: II. Crystalline rocks (2003) Treatise on Geochemistry, pp. 541-580
dc.descriptionFrei, R., Polat, A., Chromium isotope fractionation during oxidative weathering - implications from the study of a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada (2013) Precambrian Res., 224, pp. 434-453
dc.descriptionFrost, B.R., Observations on the boundary between zeolite facies and prehnite-pumpellyite facies (1980) Contrib. Mineral. Petrol., 73, pp. 365-373
dc.descriptionGonzález-Álvarez, I., Kerrich, R., REE and HFSE mobility due to protracted flow of basinal brines in the mesoproterozoic Belt-Purcell Supergroup, Laurentia (2010) Precambrian Res., 177, pp. 291-307
dc.descriptionGonzález-Álvarez, I., Kerrich, R., Weathering intensity in the Mesoproterozoic and modern large-river systems: a comparative study in the Belt-Purcell Supergroup, Canada and USA (2012) Precambrian Res., pp. 174-196
dc.descriptionGorkovetz, V.Y., (1999) Metalogenia of Karelia, p. 340. , Petrozavodsk
dc.descriptionHabicht, K.S., Gade, M., Thamdrup, B., Berg, P., Canfield, D.E., Calibration of sulfate levels in the Archean Ocean (2002) Science, 298, pp. 2372-2374
dc.descriptionHamade, T., Konhauser, K.O., Raiswell, R., Goldsmith, S., Morris, R.C., Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations (2003) Geology, 31 (1), pp. 35-38
dc.descriptionHardie, L.A., Secular variations in Precambrian seawater chemistry and the timing of Precambrian aragonite seas and calcite seas (2003) Geology (Boulder), 31 (9), pp. 785-788
dc.descriptionHanor, J.S., Reactive transport involving rock-buffered fluids of varying salinity (2001) Geochim. Cosmochim. Acta, 65, pp. 3721-3732
dc.description(1998) Handbook of Geologic Excursions, pp. 15-16
dc.descriptionHerrmann, W., Berry, R.F., MINSQ - a least squares spreadshed method for calculating mineral proportions from whole rock major element analyses (2002) Geochem. Explor. Environ. Anal., 2, pp. 361-368
dc.descriptionHogg, A.J.C., Hamilton, P.J., Macintyre, R.M., Mapping diagenetic fluid flow within a reservoir: K-Ar dating in the Alwyn area (UK North Sea) (1993) Mar. Pet. Geol., 10, pp. 279-294
dc.descriptionHolland, H.D., (1984) The Chemical Evolution of the Atmosphere and Oceans, p. 582. , Princeton University Press, Princeton, NJ
dc.descriptionHolland, H.D., 6.21. The geologic history of seawater (2003) Treatise on Geochemistry, pp. 583-625
dc.descriptionHolland, H.D., Why the atmosphere became oxygenated: a proposal (2009) Geochim. Cosmochim. Acta, 73, pp. 5241-5255
dc.descriptionHuang, W.L., Stability and kinetics of kaolinite to boehmite conversion under hydrothermal conditions (1993) Chem. Geol., 105 (1-3), pp. 197-214
dc.descriptionJamieson, J.W., Wing, B.A., Farquhar, J., Hannington, M.D., Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore (2012) Nat. Geosci., 6, pp. 61-64
dc.descriptionJohnson, J.W., Oelkers, E.H., Helgeson, H.C., SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C (1992) Comput. Geosci., 18, pp. 899-947
dc.descriptionKharaka, Y.K., Hanor, J.S., 5.16. Deep fluids in the continents: I. Sedimentary basins (2003) Treatise on Geochemistry, pp. 1-48
dc.descriptionKnauss, G.K., Dibley, M.J., Bourcier, W.L., Shaw, H.F., Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300°C (2001) Appl. Geochem., 16, pp. 1115-1128
dc.descriptionKomiya, T., Hirata, T., Kitajima, K., Yamamoto, S., Shibuya, T., Sawaki, Y., Ishikawa, T., Han, J., Evolution of the composition of seawater through geologic time, and its influence on the evolution of life (2008) Gondwana Res., 14, pp. 159-174
dc.descriptionLiou, J.G., Maruyama, S., Cho, M., Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism (1985) Mineral. Mag., 49, pp. 321-333
dc.descriptionLowson, R.T., Brown, P.L., Comarmond, M.-C.J., Rajaratnam, G., The kinetics of the dissolution of chlorite as a function of pH 1550 and at 25°C (2005) Geochim. Cosmochim. Acta, 69, pp. 1687-1699
dc.descriptionMacfarlane, A.W., Holland, H.D., The timing of alkali metasomatism in paleosols (1991) Can. Mineral., 29, pp. 1043-1050
dc.descriptionMacfarlane, A.W., Danielson, A., Holland, H.D., Geology and major and trace element chemistry of late Archean weathering profiles in the Fortescue group, western Australia: implications for atmospheric PO2 (1994) Precambrian Res., 65, pp. 297-317
dc.descriptionMaher, K., The dependence of chemical weathering rates on fluid residence time (2010) Earth Planet. Sci. Lett., 294 (1-2), pp. 101-110
dc.descriptionMaynard, J.B., Chemistry of modern soils as a guide to interpreting Precambrian Paleosols (1992) J. Geol., 100, pp. 279-289
dc.descriptionMillero, F.J., Feistel, R., Wright, D.G., McDougall, T.J., The composition of standard seawater and the definition of the reference-composition salinity scale (2008) Deep-Sea Res. I, 55, pp. 50-72
dc.descriptionMilliken, K.L., 7.07. Late diagenesis and mass transfer in sandstone-shale sequences (2003) Treatise on Geochemistry, pp. 159-160
dc.descriptionMironenko, M.V., Melikhova, T.Y., Zolotov, M.Y., Akinfiev, N.N., (2008) GEOCHEQ_M: Program complex for thermodynamic and kinetic modeling of geochemical processes in rock-water-gas systems. Version 2008. Vestn. Otdelenia nauk o Zemle RAN 26
dc.descriptionMironenko, M.V., Zolotov, M.Y., Equilibrium-kinetic model of water-rock interaction (2012) Geochem. Int., 50 (1), pp. 1-7
dc.descriptionMitchell, R.L., Sheldon, N.D., The 1100 Ma Sturgeon Falls paleosol revisited: implications for Mesoproterozoic weathering environments and atmospheric CO2 levels (2010) Precambrian Res., 183, pp. 738-748
dc.descriptionMurakami, T., Sreenivas, B., Sharma, S.D., Sugimori, H., Quantification of atmospheric oxygen levels during the Paleoproterozoic using paleosol compositions and iron oxidation kinetics (2011) Geochim. Cosmochim. Acta, 75, pp. 3982-4004
dc.descriptionNedachi, Y., Nedachi, M., Bennett, G., Ohmoto, H., Geochemistry and mineralogy of the 2.45 Ga Pronto paleosols, Ontario, Canada (2005) Chem. Geol., 214, pp. 21-44
dc.descriptionNesbitt, H.W., Young, G.M., Early Proterozoic climates and plate motions inferred from major element chemistry of lutites (1982) Nature, 299, pp. 715-717
dc.descriptionNesbitt, H.W., Young, G.M., Formation and diagenesis of weathering profiles (1989) J. Geol., 97, pp. 129-147
dc.descriptionNovoselov, A.A., Souza Filho, C.R., CRONO - a code for simulation of chemical weathering (2013) Comput. Geosci., 60, pp. 168-175
dc.descriptionOhmoto, H., Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota (1996) Geology, 24, pp. 1135-1138
dc.descriptionOlson, S.L., Kump, L.R., Kasting, J.F., Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases (2013) Chem. Geol., 362, pp. 35-43
dc.descriptionPalandri, J.L., Kharaka, Y.K., (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. Open-File Rep. 2004-1068, p. 70. , U.S. Geol. Surv., Menlo Park, CA
dc.descriptionPolat, A., Longstaffe, F., Weisener, C., Fryer, B., Frei, R., Kerrich, R., Extreme element mobility during transformation of Neoarchean (ca. 2.7 Ga) pillow basalts to a Paleoproterozoic (ca. 1.9 Ga) paleosol, Schreiber Beach, Ontario, Canada (2012) Chem. Geol., pp. 145-173
dc.descriptionPrasad, N., Roscoe, S.M., Geochemical and mineralogical features of sub-Huronian paleosols, their formation and significance to atmospheric evolution during the Huronian period (1991) Program with Abstract Geological Association of Canada and Mineralogical Association of Canada Joint Annual Meeting, p. 101
dc.descriptionPrasad, N., Roscoe, S.M., Evidence of anoxic to oxic atmospheric change during 2.45-2.22Ga from lower and upper sub-Huronian paleosols, Canada (1996) Catena, 27, pp. 105-121
dc.descriptionPrice, J.R., Velbel, M.A., Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks (2003) Chem. Geol., 2002, pp. 397-416
dc.descriptionRainbird, R.H., Nesbitt, H.W., Donaldson, J.A., Formation and diagenesis of a sub-Huronian saprolith: comparison with a modern weathering profile (1990) J. Geol., 98, pp. 801-822
dc.descriptionRaiswell, R., Canfield, D.E., The iron biogeochemical cycle past and present (2012) Geochem. Perspect., 1 (1), p. 222
dc.descriptionRenne, P.R., Ernesto, M., Pacca, I.G., Coe, R.S., Glen, J.M., Prévot, M., Perrin, M., The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary (1992) Science, 258, pp. 975-981
dc.descriptionRetallack, G.J., Untangling the effects of burial alteration and ancient soil formation (1991) Annu. Rev. Earth Planet. Sci., 19, pp. 183-206
dc.descriptionRetallack, G.J., Bestland, E.A., Fremd, T.J., Eocene and Oligocene paleosols of central Oregon (2000) Geol. Soc. Am. Spec. Paper, 344, pp. 1-192
dc.descriptionRies, J.B., Anderson, M.A., Hill, R.T., Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: a potential proxy for calcite-aragonite seas in Precambrian time (2008) Geobiology, 6, pp. 106-119
dc.descriptionRouchon, V., Orberger, B., Origin and mechanisms of K-Si-metasomatism of ca. 3.4-3.3Ga volcaniclastic deposits and implications for Archean seawater evolution: examples from cherts of Kittys Gap (Pilbara craton, Australia) and Msauli (Barberton Greenstone Belt, South Africa) (2008) Precambrian Res., 165, pp. 169-189
dc.descriptionRye, R., Holland, H.D., Paleosols and the evolution of atmospheric oxygen: a critical review (1998) Am. J. Sci., 298, pp. 621-672
dc.descriptionRye, R., Holland, H.D., Geology and geochemistry of paleosols developed on the Hekpoort basalt, Pretoria Group, South Africa (2000) Am. J. Sci., 300, pp. 85-141
dc.descriptionSak, P.B., Fisher, D.M., Gardner, T.W., Murphy, K., Brantley, S.L., Rates of weathering rind formation on Costa Rican basalt (2004) Geochim. Cosmochim. Acta, 68, pp. 1453-1472
dc.descriptionSheldon, N.D., Retallack, G.J., Equation for compaction of paleosols due to burial (2001) Geology, 29 (3), pp. 247-250
dc.descriptionSheldon, N.D., Precambrian paleosols and atmospheric CO2 levels (2006) Precambrian Res., 147, pp. 148-155
dc.descriptionSheldon, N.D., Tabor, N.J., Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols (2009) Earth-Sci. Rev., 95, pp. 1-52
dc.descriptionSheldon, N.D., Causes and consequences of low atmospheric pCO2 in the Late Mesoproterozoic (2013) Chem. Geol., 362, pp. 224-231
dc.descriptionSiever, R., The silica cycle in the Precambrian (1992) Geochim. Cosmochim. Acta, 56, pp. 3265-3272
dc.descriptionSpear, F.S., (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, p. 799. , Mineralogical Society of America, Washington, DC
dc.descriptionStüeken, E.E., Catling, D.C., Buick, R., Contributions to late Archaean sulphur cycling by life on land (2012) Nat. Geosci., 5 (10), pp. 722-725
dc.descriptionSutton, S.J., Maynard, J.B., Multiple alteration events in the history of a sub-Huronian regolith at Lauzon Bay, Ontario (1992) Can. J. Earth Sci., 29, pp. 432-445
dc.descriptionSutton, S.J., Maynard, J.B., Sediment- and basalt-hosted regoliths in the Huronian Supergroup: role of parent lithology in middle Precambrian weathering profiles (1993) Can. J. Earth Sci., 30, pp. 60-75
dc.descriptionThordarson, T., Self, S., Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA (1996) J. Volcanol. Geotherm. Res., 74, pp. 49-73
dc.descriptionUtsunomia, S., Murakami, T., Nakama, M., Kasada, T., Iron oxidation state of a 2.45-Byr-old paleosol developed on mafic volcanics (2003) Geochim. Cosmochim. Acta, 67 (2), pp. 213-221
dc.descriptionWeiershäuser, L., Spooner, E.T.C., Seafloor hydrothermal fluids, Ben Nevis area, Abitibi Greenstone Belt: implications for Archean (~2.7Ga) seawater properties (2005) Precambrian Res., 138, pp. 89-123
dc.descriptionWiggering, H., Beukes, N.J., Petrography and geochemistry of a 2000-2200-Ma-old hematitic Paleo-alteration profile on Ongeluk basalt of the Transvaal supergroup, Griqualand West, South Africa Original Research Article (1990) Precambrian Res., 46 (3), pp. 241-258
dc.descriptionWilliams, L.B., Hervig, R.L., Hutcheon, I., Boron isotope geochemistry during diagenesis. Part II: Applications to organic-rich sediments (2001) Geochim. Cosmochim. Acta, 65 (11), pp. 1783-1794
dc.descriptionWolery, T.J., Jove-Colon, C.F., (2007) Qualification of Thermodynamic Data for Geochemical Modeling of Mineral-Water Interactions in Dilute Systems. Report for U.S. Department of Energy. ANL-WIS-GS-000003 REV 01. Las Vegas, p. 412
dc.descriptionYang, X.S., (1997) Mathematical Modeling of Compaction and Diagenesis in Sedimentary Basins, p. 186. , (PhD thesis), University of Oxford
dc.descriptionYang, W., Holland, H.D., Rye, R., Evidence for low or no oxygen in the late Archean atmosphere from the ~2.76Ga Mt. Roe #2 paleosol, Western Australia. Part 3: Original Research Article (2002) Geochim. Cosmochim. Acta, 66 (21), pp. 3707-3718
dc.descriptionYang, L., Steefel, C.I., Kaolinite dissolution and precipitation kinetics at 22°C and pH 4 (2008) Geochim. Cosmochim. Acta, 72, pp. 99-116
dc.descriptionYokota, K., Kanzaki, Y., Murukami, T., Weathering model for the quantification of atmospheric oxygen evolution during the Paleoproterozoic (2013) Geochim. Cosmochim. Acta, 117, pp. 332-347
dc.descriptionZbinden, E.A., Holland, H.D., Feakes, C.R., The Sturgeon Falls paleosol and the composition of the atmosphere 1.1Ga BP (1988) Precambrian Res., 42, pp. 141-163
dc.descriptionZolotov, M., Mironenko, Y., Timing of acid weathering on Mars: a kinetic-thermodynamic assessment (2007) J. Geophys. Res., 112, p. E0700
dc.languageen
dc.publisherElsevier
dc.relationPrecambrian Research
dc.rightsfechado
dc.sourceScopus
dc.titlePotassium Metasomatism Of Precambrian Paleosols
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución