Actas de congresos
Evaluating Software-based Fingerprint Liveness Detection Using Convolutional Networks And Local Binary Patterns
Registro en:
9781479951758
Bioms 2014 - 2014 Ieee Workshop On Biometric Measurements And Systems For Security And Medical Applications, Proceedings. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. 22 - 29, 2014.
10.1109/BIOMS.2014.6951531
2-s2.0-84915768198
Autor
Frassetto Nogueira R.
De Alencar Lotufo R.
Campos Machado R.
Institución
Resumen
With the growing use of biometric authentication systems in the past years, spoof fingerprint detection has become increasingly important. In this work, we implement and evaluate two different feature extraction techniques for software-based fingerprint liveness detection: Convolutional Networks with random weights and Local Binary Patterns. Both techniques were used in conjunction with a Support Vector Machine (SVM) classifier. Dataset Augmentation was used to increase classifier's performance and a variety of preprocessing operations were tested, such as frequency filtering, contrast equalization, and region of interest filtering. The experiments were made on the datasets used in The Liveness Detection Competition of years 2009, 2011 and 2013, which comprise almost 50,000 real and fake fingerprints' images. Our best method achieves an overall rate of 95.2% of correctly classified samples - an improvement of 35% in test error when compared with the best previously published results.
22 29 IEEE Italy Section Galbally, J., Alonso-Fernandez, F., Fierrez, J., Ortega-Garcia, J., A high performance fingerprint liveness detection method based on quality related features (2012) Future Generation Computer Systems, 28 (1), pp. 311-321 Wiehe, A., Søndrol, T., Olsen, O.K., Skarderud, F., (2004) Attacking Fingerprint Sensors, , Gjøvik University College Chen, Y., Jain, A., Fingerprint deformation for spoof detection (2005) Proc. IEEE Biometric Symposium, pp. 19-21 Tan, B., Schuckers, S., Comparison of ridge-and intensitybased perspiration liveness detection methods in fingerprint scanners (2006) Defense and Security Symposium International Society for Optics and Photonics, pp. 62020A-62020A Coli, P., Marcialis, G.L., Roli, F., Fingerprint silicon replicas: Static and dynamic features for vitality detection using an optical capture device (2008) International Journal of Image and Graphics, 8 (4), pp. 495-512 Lapsley, P., Lee, J., Pare, D., Hoffman, N., (1998) Anti-fraud Biometric Scanner That Accurately Detects Blood Flow Antonelli, A., Cappelli, R., Maio, D., Maltoni, D., Fake finger detection by skin distortion analysis (2006) Information Forensics and Security, 1 (3), pp. 360-373 Baldisserra, D., Franco, A., Maio, D., Maltoni, D., Fake fingerprint detection by odor analysis (2005) Advances in Biometrics, pp. 265-272. , Berlin Heidelberg, Springer Marcialis, G.L., Lewicke, A., Tan, B., Coli, P., Grimberg, D., Congiu, A., Schuckers, S., First international fingerprint liveness detection competition-livdet 2009 (2009) Image Analysis and Processing-ICIAP 2009, pp. 12-23 Jain, A.K., Chen, Y., Demirku, M., Pores and ridges: Highresolution fingerprint matching using level 3 features (2007) Pattern Analysis and Machine Intelligence, 29 (1), pp. 15-27 Gragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L., Fingerprint liveness detection based on weber local image descriptor (2013) IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications Gragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L., Local contrast phase descriptor for fingerprint liveness detection (2014) Pattern Recognition, , 9 Jun Jia, X., Yang, X., Cao, K., Zang, Y., Zhang, N., Dai, R., Tian, J., Multi-scale local binary pattern with filters for spoof fingerprint detection (2013) Information Sciences Ghiani, L., Marcialis, G.L., Roli, F., Fingerprint liveness detection by local phase quantization (2012) Proc. IEEE Int. Conf. on Pattern Recognition (ICPR) Nikam, S.B., Agarwal, S., (2008) Local Binary Pattern and Wavelet-based Spoof Fingerprint Detection, 1, pp. 141-159 Ghiani, L., Hadid, A., Marcialis, G.L., Roli, F., Fingerprint liveness detection using binarized statistical image features (2013) Proc. IEEE Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS) Simard, P.Y., Steinkraus, D., Platt, J.C., Best practices for convolutional neural networks applied to visual document analysis (2013) ICDAR, 3, pp. 958-962 Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks (2012) NIPS, 1 (2) Dietterich, T.G., Approximate statistical tests for comparing supervised classification learning algorithms (1998) Neural Computation, 10 (7), pp. 1895-1923 Zimmerman, J.B., Pizer, S.M., Staab, E.V., Perry, J.R., McCartney, W., Brenton, B.C., An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement (1988) Medical Imaging, IEEE Transactions on, 7 (4), pp. 304-312 Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Zuiderveld, K., Adaptive histogram equalization and its variations (1987) Computer Vision, Graphics, and Image Processing, pp. 355-368 Lecun, Y., Generalization and network design strategies (1989) Connections in Perspective Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R., Regularization of neural networks using dropconnect (2013) Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 1058-1066 Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y., (2013) Maxout Networks, , arXiv preprint arXiv: 1302. 4389 Nair, V., Hinton, G.E., Rectified linear units improve restricted Boltzmann machines (2010) Proceedings of the 27th International Conference on Machine Learning (ICML-10) Boureau, Y.-L., Ponce, J., Lecun, Y., A theoretical analysis of feature pooling in visual recognition (2010) Proceedings of the 27th International Conference on Machine Learning (ICML-10) Zeiler, M.D., Fergus, R., (2013) Stochastic Pooling for Regularization of Deep Convolutional Neural Networks, , arXiv preprint arXiv: 1301. 3557 Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets (2006) Neural Computation, 18 (7), pp. 1527-1554 Lecun, Y., Kavukcuoglu, K., Farabet, C., Convolutional networks and applications in vision (2010) Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pp. 253-256. , May Jarrett, K., Kavukcuoglu, K., Ranzato, M., Lecun, Y., What is the best multi-stage architecture for object recognition? (2009) Computer Vision, 2009 IEEE 12th International Conference on, pp. 2146-2153. , September Saxe, A., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., Ng, A.Y., On random weights and unsupervised feature learning (2011) Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1089-1096 Lyu, S., Simoncelli, E.P., Nonlinear image representation using divisive normalization (2008) Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference On. IEEE Pinto, N., Cox, D.D., Dicarlo, J.J., Why is real-world visual object recognition hard? (2008) PLoS Computational Biology, 4 (1-27) Lyu, S., Divisive normalization: Justification and effectiveness as efficient coding transform (2010) NIPS Hadid, A., Pietikainen, M., Ahonen, T., A discriminative feature space for detecting and recognizing faces (2004) Computer Vision and Pattern Recognition Ojala, T., Pietikäinen, M., Mäenpää, T., Multiresolution gray scale and rotation invariant texture analysis with local binary patterns (2002) IEEE Trans. Pattern Anal. Mach. Intell, 24 (7), pp. 971-987. , Jul Ahonen, T., Hadid, A., Pietikäinen, M., Face recognition with local binary patterns (2004) Computer Vision-eccv, pp. 469-481 Halko, N., Martinsson, P.-G., Tropp, J.A., Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions (2011) SIAM Review, 53 (2), pp. 217-288 Martinsson, P.-G., Rokhlin, V., Tygert, M., A randomized algorithm for the decomposition of matrices (2011) Applied and Computational Harmonic Analysis, 30 (1), pp. 47-68 Hyvärinen, A., Hurri, J., Hoyer, P., Principal components and whitening (2009) Natural Image Statistics, pp. 93-130. , London, Springer http://ufldl.stanford.edu/wiki/index.php/Whitening, [Accessed 08 03 2014]Coates, A., Ng, A.Y., Lee, H., An analysis of single-layer networks in unsupervised feature learning (2011) International Conference on Artificial Intelligence and Statistics Cao, L.J., Chua, K.S., Chong, W.K., Lee, H.P., Gu, Q.M., A comparison of pca, kpca and ica for dimensionality reduction in support vector machine (2003) Neurocomputing, 55 (1), pp. 321-336 Lei, H., Govindaraju, V., Speeding up multi-class svm evaluation by pca and feature selection (2005) Feature Selection for Data Mining, p. 72 Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks (2012) NIPS, 1 (2) Cireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J., (2011) High-performance Neural Networks for Visual Object Classification, , arXiv: 1102. 0183 Ciresan, D., Meier, U., Schmidhuber, J., Multi-column deep neural networks for image classification (2012) Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 3642-3649. , June https://github.com/giovanichiachia/convnet-rfw, G. Chiachia. [Accessed 17 05 2014]Yambay, D., Ghiani, L., Denti, P., Marcialis, G.L., Roli, F., Schuckers, S., LivDet 2011-fingerprint liveness detection competition 2011 (2012) Biometrics (ICB), 2012 5th IAPR International Conference on, pp. 208-215 Ghiani, L., Yambay, D., Mura, V., Tocco, S., Marcialis, G.L., Roli, F., Schuckcrs, S., LivDet 2013 fingerprint liveness detection competition 2013 (2013) Biometrics (ICB), 2013 International Conference on, pp. 1-6