dc.creatorFrassetto Nogueira R.
dc.creatorDe Alencar Lotufo R.
dc.creatorCampos Machado R.
dc.date2014
dc.date2015-06-25T17:59:17Z
dc.date2015-11-26T14:58:13Z
dc.date2015-06-25T17:59:17Z
dc.date2015-11-26T14:58:13Z
dc.date.accessioned2018-03-28T22:09:57Z
dc.date.available2018-03-28T22:09:57Z
dc.identifier9781479951758
dc.identifierBioms 2014 - 2014 Ieee Workshop On Biometric Measurements And Systems For Security And Medical Applications, Proceedings. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. 22 - 29, 2014.
dc.identifier
dc.identifier10.1109/BIOMS.2014.6951531
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84915768198&partnerID=40&md5=3e47c5c3fd7e07908f39ed5deee1d852
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87339
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87339
dc.identifier2-s2.0-84915768198
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255815
dc.descriptionWith the growing use of biometric authentication systems in the past years, spoof fingerprint detection has become increasingly important. In this work, we implement and evaluate two different feature extraction techniques for software-based fingerprint liveness detection: Convolutional Networks with random weights and Local Binary Patterns. Both techniques were used in conjunction with a Support Vector Machine (SVM) classifier. Dataset Augmentation was used to increase classifier's performance and a variety of preprocessing operations were tested, such as frequency filtering, contrast equalization, and region of interest filtering. The experiments were made on the datasets used in The Liveness Detection Competition of years 2009, 2011 and 2013, which comprise almost 50,000 real and fake fingerprints' images. Our best method achieves an overall rate of 95.2% of correctly classified samples - an improvement of 35% in test error when compared with the best previously published results.
dc.description
dc.description
dc.description22
dc.description29
dc.descriptionIEEE Italy Section
dc.descriptionGalbally, J., Alonso-Fernandez, F., Fierrez, J., Ortega-Garcia, J., A high performance fingerprint liveness detection method based on quality related features (2012) Future Generation Computer Systems, 28 (1), pp. 311-321
dc.descriptionWiehe, A., Søndrol, T., Olsen, O.K., Skarderud, F., (2004) Attacking Fingerprint Sensors, , Gjøvik University College
dc.descriptionChen, Y., Jain, A., Fingerprint deformation for spoof detection (2005) Proc. IEEE Biometric Symposium, pp. 19-21
dc.descriptionTan, B., Schuckers, S., Comparison of ridge-and intensitybased perspiration liveness detection methods in fingerprint scanners (2006) Defense and Security Symposium International Society for Optics and Photonics, pp. 62020A-62020A
dc.descriptionColi, P., Marcialis, G.L., Roli, F., Fingerprint silicon replicas: Static and dynamic features for vitality detection using an optical capture device (2008) International Journal of Image and Graphics, 8 (4), pp. 495-512
dc.descriptionLapsley, P., Lee, J., Pare, D., Hoffman, N., (1998) Anti-fraud Biometric Scanner That Accurately Detects Blood Flow
dc.descriptionAntonelli, A., Cappelli, R., Maio, D., Maltoni, D., Fake finger detection by skin distortion analysis (2006) Information Forensics and Security, 1 (3), pp. 360-373
dc.descriptionBaldisserra, D., Franco, A., Maio, D., Maltoni, D., Fake fingerprint detection by odor analysis (2005) Advances in Biometrics, pp. 265-272. , Berlin Heidelberg, Springer
dc.descriptionMarcialis, G.L., Lewicke, A., Tan, B., Coli, P., Grimberg, D., Congiu, A., Schuckers, S., First international fingerprint liveness detection competition-livdet 2009 (2009) Image Analysis and Processing-ICIAP 2009, pp. 12-23
dc.descriptionJain, A.K., Chen, Y., Demirku, M., Pores and ridges: Highresolution fingerprint matching using level 3 features (2007) Pattern Analysis and Machine Intelligence, 29 (1), pp. 15-27
dc.descriptionGragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L., Fingerprint liveness detection based on weber local image descriptor (2013) IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications
dc.descriptionGragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L., Local contrast phase descriptor for fingerprint liveness detection (2014) Pattern Recognition, , 9 Jun
dc.descriptionJia, X., Yang, X., Cao, K., Zang, Y., Zhang, N., Dai, R., Tian, J., Multi-scale local binary pattern with filters for spoof fingerprint detection (2013) Information Sciences
dc.descriptionGhiani, L., Marcialis, G.L., Roli, F., Fingerprint liveness detection by local phase quantization (2012) Proc. IEEE Int. Conf. on Pattern Recognition (ICPR)
dc.descriptionNikam, S.B., Agarwal, S., (2008) Local Binary Pattern and Wavelet-based Spoof Fingerprint Detection, 1, pp. 141-159
dc.descriptionGhiani, L., Hadid, A., Marcialis, G.L., Roli, F., Fingerprint liveness detection using binarized statistical image features (2013) Proc. IEEE Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS)
dc.descriptionSimard, P.Y., Steinkraus, D., Platt, J.C., Best practices for convolutional neural networks applied to visual document analysis (2013) ICDAR, 3, pp. 958-962
dc.descriptionKrizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks (2012) NIPS, 1 (2)
dc.descriptionDietterich, T.G., Approximate statistical tests for comparing supervised classification learning algorithms (1998) Neural Computation, 10 (7), pp. 1895-1923
dc.descriptionZimmerman, J.B., Pizer, S.M., Staab, E.V., Perry, J.R., McCartney, W., Brenton, B.C., An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement (1988) Medical Imaging, IEEE Transactions on, 7 (4), pp. 304-312
dc.descriptionPizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Zuiderveld, K., Adaptive histogram equalization and its variations (1987) Computer Vision, Graphics, and Image Processing, pp. 355-368
dc.descriptionLecun, Y., Generalization and network design strategies (1989) Connections in Perspective
dc.descriptionWan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R., Regularization of neural networks using dropconnect (2013) Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 1058-1066
dc.descriptionGoodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y., (2013) Maxout Networks, , arXiv preprint arXiv: 1302. 4389
dc.descriptionNair, V., Hinton, G.E., Rectified linear units improve restricted Boltzmann machines (2010) Proceedings of the 27th International Conference on Machine Learning (ICML-10)
dc.descriptionBoureau, Y.-L., Ponce, J., Lecun, Y., A theoretical analysis of feature pooling in visual recognition (2010) Proceedings of the 27th International Conference on Machine Learning (ICML-10)
dc.descriptionZeiler, M.D., Fergus, R., (2013) Stochastic Pooling for Regularization of Deep Convolutional Neural Networks, , arXiv preprint arXiv: 1301. 3557
dc.descriptionHinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets (2006) Neural Computation, 18 (7), pp. 1527-1554
dc.descriptionLecun, Y., Kavukcuoglu, K., Farabet, C., Convolutional networks and applications in vision (2010) Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, pp. 253-256. , May
dc.descriptionJarrett, K., Kavukcuoglu, K., Ranzato, M., Lecun, Y., What is the best multi-stage architecture for object recognition? (2009) Computer Vision, 2009 IEEE 12th International Conference on, pp. 2146-2153. , September
dc.descriptionSaxe, A., Koh, P.W., Chen, Z., Bhand, M., Suresh, B., Ng, A.Y., On random weights and unsupervised feature learning (2011) Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 1089-1096
dc.descriptionLyu, S., Simoncelli, E.P., Nonlinear image representation using divisive normalization (2008) Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference On. IEEE
dc.descriptionPinto, N., Cox, D.D., Dicarlo, J.J., Why is real-world visual object recognition hard? (2008) PLoS Computational Biology, 4 (1-27)
dc.descriptionLyu, S., Divisive normalization: Justification and effectiveness as efficient coding transform (2010) NIPS
dc.descriptionHadid, A., Pietikainen, M., Ahonen, T., A discriminative feature space for detecting and recognizing faces (2004) Computer Vision and Pattern Recognition
dc.descriptionOjala, T., Pietikäinen, M., Mäenpää, T., Multiresolution gray scale and rotation invariant texture analysis with local binary patterns (2002) IEEE Trans. Pattern Anal. Mach. Intell, 24 (7), pp. 971-987. , Jul
dc.descriptionAhonen, T., Hadid, A., Pietikäinen, M., Face recognition with local binary patterns (2004) Computer Vision-eccv, pp. 469-481
dc.descriptionHalko, N., Martinsson, P.-G., Tropp, J.A., Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions (2011) SIAM Review, 53 (2), pp. 217-288
dc.descriptionMartinsson, P.-G., Rokhlin, V., Tygert, M., A randomized algorithm for the decomposition of matrices (2011) Applied and Computational Harmonic Analysis, 30 (1), pp. 47-68
dc.descriptionHyvärinen, A., Hurri, J., Hoyer, P., Principal components and whitening (2009) Natural Image Statistics, pp. 93-130. , London, Springer
dc.descriptionhttp://ufldl.stanford.edu/wiki/index.php/Whitening, [Accessed 08 03 2014]Coates, A., Ng, A.Y., Lee, H., An analysis of single-layer networks in unsupervised feature learning (2011) International Conference on Artificial Intelligence and Statistics
dc.descriptionCao, L.J., Chua, K.S., Chong, W.K., Lee, H.P., Gu, Q.M., A comparison of pca, kpca and ica for dimensionality reduction in support vector machine (2003) Neurocomputing, 55 (1), pp. 321-336
dc.descriptionLei, H., Govindaraju, V., Speeding up multi-class svm evaluation by pca and feature selection (2005) Feature Selection for Data Mining, p. 72
dc.descriptionKrizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks (2012) NIPS, 1 (2)
dc.descriptionCireşan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J., (2011) High-performance Neural Networks for Visual Object Classification, , arXiv: 1102. 0183
dc.descriptionCiresan, D., Meier, U., Schmidhuber, J., Multi-column deep neural networks for image classification (2012) Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 3642-3649. , June
dc.descriptionhttps://github.com/giovanichiachia/convnet-rfw, G. Chiachia. [Accessed 17 05 2014]Yambay, D., Ghiani, L., Denti, P., Marcialis, G.L., Roli, F., Schuckers, S., LivDet 2011-fingerprint liveness detection competition 2011 (2012) Biometrics (ICB), 2012 5th IAPR International Conference on, pp. 208-215
dc.descriptionGhiani, L., Yambay, D., Mura, V., Tocco, S., Marcialis, G.L., Roli, F., Schuckcrs, S., LivDet 2013 fingerprint liveness detection competition 2013 (2013) Biometrics (ICB), 2013 International Conference on, pp. 1-6
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationBIOMS 2014 - 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleEvaluating Software-based Fingerprint Liveness Detection Using Convolutional Networks And Local Binary Patterns
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución