Artículos de revistas
H2 Control Of Discrete-time Markov Jump Linear Systems With Uncertain Transition Probability Matrix: Improved Linear Matrix Inequality Relaxations And Multi-simplex Modelling
Registro en:
Iet Control Theory And Applications. , v. 7, n. 12, p. 1665 - 1674, 2013.
17518644
10.1049/iet-cta.2012.1015
2-s2.0-84883856160
Autor
Morais C.F.
Braga M.F.
Oliveira R.C.L.F.
Peres P.L.D.
Institución
Resumen
This study is concerned with the problem of H2 state-feedback control design for discrete-time Markov jump linear systems (MJLS), assuming that the transition probability matrix is not precisely known, but belongs to a polytopic domain, or contains unknown or bounded elements. As a first contribution, the uncertainties of the transition probability matrix are modelled in terms of the Cartesian product of simplexes, called multi-simplex. Thanks to this representation, the problem of robust mean square stability analysis with an H2 norm bound can be solved through convergent linear matrix inequality (LMI) relaxations constructed in terms of polynomial solutions. The proposed conditions yield a better trade-off between precision and computational effort when compared with other methods. As a second contribution, new conditions in terms of LMIs with a scalar parameter lying in the interval (-1, 1) are proposed for H2 state-feedback control with complete, partial or no observation of the Markov chain. Owing to the presence of the scalar parameter, less conservative results when compared with other conditions available in the literature can be obtained, at the price of increasing the associated computational effort. Numerical examples illustrate the advantages of the proposed methodology. © The Institution of Engineering and Technology 2013. 7 12 1665 1674 Ji, Y., Chizeck, H.J., Controllability, stabilizability and continuoustime markovian jump linear-quadratic control (1990) IEEE Trans. Autom. Control, 35 (7), pp. 777-788 Ji, Y., Chizeck, H.J., Jump linear quadratic gaussian control: Steadystate and testable conditions (1990) Control Theory Adv. Technol, 6, pp. 289-319 Feng, X., Loparo, K.A., Ji, Y., Chizeck, H.J., Stochastic stability properties of jump linear systems (1992) IEEE Trans. Autom. Control, 37 (1), pp. 38-53 Costa, O.L.V., Fragoso, M.D., Stability results for discrete-time linear systems with markovian jumping parameters (1993) J. Math. Anal. Appl, 179, pp. 154-178 Costa, O.L.V., Fragoso, M.D., Discrete-time lq-optimal control problems for infinite markov jump parameter systems (1995) IEEE Trans. Autom. Control, 40 (12), pp. 2076-2088 Costa, O.L.V., Do Val, J.B.R., Geromel, J.C., A convex programming approach to h2-control of discrete-time markovian jump linear systems (1997) Int. J. Control, 66 (4), pp. 557-579 Costa, O.L.V., Assumpção Filho, E.O., Boukas, E.K., Marques, R.P., Constrained quadratic state feedback control of discrete-time markovian jump linear systems (1999) Automatica, 35 (4), pp. 617-626 Boukas, E.K., (2005) Stochastic Switching Systems: Analysis and Design, , Birkhäuser, Berlin, Germany Costa, O.L.V., Fragoso, M.D., Marques, R.P., (2005) Discrete-Time Markovian Jump Linear Systems, , Springer-Verlag, New York, NY, USA Vargas, A.N., Furloni, W., Do Val, J.B.R., Control of observed markov jump linear systems with constraints on state and input: A necessary optimality condition (2007) Proc. Third IFAC Symp. System, Structure and Control (SSSC07), pp. 250-255. , Foz do Iguassu, PR, Brazil, October Yang, T., Networked control system: A brief survey (2006) IET Control Theory Appl, 153 (4), pp. 403-412 Zhang, L., Gao, H., Kaynak, O., Network-induced constraints in networked control systems -A survey (2013) IEEE Trans. Ind. Inf, 9 (1), pp. 403-416 Xiong, J., Lam, J., Gao, H., Ho, D.W.C., On robust stabilization of markovian jump systems with uncertain switching probabilities (2005) Automatica, 41 (5), pp. 897-903 De Souza, C.E., Robust stability and stabilization of uncertain discretetime markovian jump linear systems (2006) IEEE Trans. Autom. Control, 51 (5), pp. 836-841 Karan, M., Shi, P., Kaya, C.Y., Transition probability bounds for the stochastic stability robustness of continuous-and discretetime markovian jump linear systems (2006) Automatica, 42, pp. 2159-2168 Oliveira, R.C.L.F., Vargas, A.N., Do Val, J.B.R., Peres, P.L.D., Robust stability, h2 analysis and stabilisation of discrete-time markov jump linear systems with uncertain probability matrix (2009) Int. J. Control, 82 (3), pp. 470-481 Boukas, E.K., Guaranteed cost for stochastic systems with unknown transition jump rate (2009) Proc. 2009 American Control Conf., pp. 4422-4427. , St. Louis, MO, USA, June Xiong, J., Lam, J., Robust h2 control of markovian jump systems with uncertain switching probabilities (2009) Int. J. Syst. Sci, 40 (3), pp. 255-265 Luan, X., Liu, F., Shi, P., Finite-time filtering for non-linear stochastic systems with partially known transition jump rates (2010) IET Control Theory Appl, 4 (5), pp. 735-745 Ma, S., Boukas, E.K., Chinniah, Y., Stability and stabilization of discrete-time singular markov jump systems with time-varying delay (2010) Int. J. Robust Nonlinear Control, 20 (5), pp. 531-543 Ma, S., Zhang, C., Zhu, S., Robust stability for discrete-time uncertain singular markov jump systems with actuator saturation (2011) IET Control Theory Appl, 5 (2), pp. 255-262 Shen, M., Yang, G.-H., New analysis and synthesis conditions for continuous markov jump linear systems with partly known transition probabilities (2012) IET Control Theory Appl, 6 (14), pp. 2318-2325 Zhang, L., Boukas, E.K., Stability and stabilization of markovian jump linear systems with partly unknown transition probabilities (2009) Automatica, 45 (2), pp. 463-468 Zhang, L., Boukas, E.K., H∞ control of a class of extended markov jump linear systems (2009) IET Control Theory Appl, 3 (7), pp. 834-842 Zuo, Z., Liu, Y., Wang, Y., Li, H., Finite-time stochastic stability and stabilisation of linear discrete-time markovian jump systems with partly unknown transition probabilities (2012) IET Control Theory Appl, 6 (10), pp. 1522-1526 Zhang, Y., He, Y., Wu, M., Zhang, J., State estimation for markovian jump systems with time-varying delay and partial information on transition probabilities (2012) IET Control Theory Appl, 6 (16), pp. 2549-2555 Oliveira, R.C.L.F., Bliman, P.-A., Peres, P.L.D., Robust lmis with parameters in multi-simplex: Existence of solutions and applications (2008) Proc. 47th IEEE Conf. Decision and Control, pp. 2226-2231. , Cancun, Mexico, December Do Val, J.B.R., Geromel, J.C., Gonçalves, A.P., The h2-control for jump linear systems: Cluster observations of the markov state (2002) Automatica, 38 (2), pp. 343-349 Braga, M.F., Morais, C.F., Oliveira, R.C.L.F., Peres, P.L.D., Robust stability and stabilization of discrete-time markov jump linear systems with partly unknown transition probability matrix (2013) Proc. 2013 American Control Conf., pp. 6800-6805. , Washington DC USA June Löfberg, J., Yalmip: A toolbox for modeling and optimization in matlab (2004) Proc. 2004 IEEE Int. Symp. Computer Aided Control Systems Design, pp. 284-289. , http://control.ee.ethz.ch/~joloef/yalmip.php, Taipei, Taiwan, September Sturm, J.F., Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones (1999) Optim. Methods Softw, 11 (1-4), pp. 625-653. , http://sedumi.ie.lehigh.edu Boukas, E.K., H∞ control of discrete-time markov jump systems with bounded transition probabilities (2009) Optim. Control Appl. Methods, 30 (5), pp. 477-494 Zhang, L., Boukas, E.K., Mode-dependent filtering for discretetime markovian jump linear systems with partly unknown transition probabilities (2009) Automatica, 45 (6), pp. 1462-1467 Bliman, P.-A., An existence result for polynomial solutions of parameter-dependent lmis (2004) Syst. Control Lett, 51 (3-4), pp. 165-169 Oliveira, R.C.L.F., Peres, P.L.D., Parameter-dependent lmis in robust analysis: Characterization of homogeneous polynomially parameterdependent solutions via lmi relaxations (2007) IEEE Trans. Autom. Control, 52 (7), pp. 1334-1340 Scherer, C.W., Higher-order relaxations for robust lmi problems with verifications for exactness (2003) Proc. 42nd IEEE Conf. Decision and Control, pp. 4652-4657. , Maui, HI, USA, December Scherer, C.W., Relaxations for robust linear matrix inequality problems with verifications for exactness (2005) SIAM J. Matrix Anal. Appl, 27 (2), pp. 365-395 Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., Linear matrix inequalities in system and control theory (1994) SIAM Studies in Applied Mathematics, p. 39. , Philadelphia, PA Gahinet, P., Apkarian, P., A linear matrix inequality approach to h∞ control (1994) Int. J. Robust Nonlinear Control, 4 (4), pp. 421-448 Iwasaki, T., Skelton, R.E., All controllers for the general h∞ control problem: Lmi existence conditions and state-space formulas (1994) Automatica, 30 (8), pp. 1307-1317 Pipeleers, G., Demeulenaere, B., Swevers, J., Vandenberghe, L., Extended lmi characterizations for stability and performance of linear systems (2009) Syst. Control Lett, 58 (7), pp. 510-518 Blair, W.P., Sworder, D.D., Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria (1975) Int. J. Control, 21 (5), pp. 833-841