dc.creatorMorais C.F.
dc.creatorBraga M.F.
dc.creatorOliveira R.C.L.F.
dc.creatorPeres P.L.D.
dc.date2013
dc.date2015-06-25T19:09:51Z
dc.date2015-11-26T14:56:51Z
dc.date2015-06-25T19:09:51Z
dc.date2015-11-26T14:56:51Z
dc.date.accessioned2018-03-28T22:08:47Z
dc.date.available2018-03-28T22:08:47Z
dc.identifier
dc.identifierIet Control Theory And Applications. , v. 7, n. 12, p. 1665 - 1674, 2013.
dc.identifier17518644
dc.identifier10.1049/iet-cta.2012.1015
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84883856160&partnerID=40&md5=9d24dcf27300f8a6492162b0db6eab5b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88385
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88385
dc.identifier2-s2.0-84883856160
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255543
dc.descriptionThis study is concerned with the problem of H2 state-feedback control design for discrete-time Markov jump linear systems (MJLS), assuming that the transition probability matrix is not precisely known, but belongs to a polytopic domain, or contains unknown or bounded elements. As a first contribution, the uncertainties of the transition probability matrix are modelled in terms of the Cartesian product of simplexes, called multi-simplex. Thanks to this representation, the problem of robust mean square stability analysis with an H2 norm bound can be solved through convergent linear matrix inequality (LMI) relaxations constructed in terms of polynomial solutions. The proposed conditions yield a better trade-off between precision and computational effort when compared with other methods. As a second contribution, new conditions in terms of LMIs with a scalar parameter lying in the interval (-1, 1) are proposed for H2 state-feedback control with complete, partial or no observation of the Markov chain. Owing to the presence of the scalar parameter, less conservative results when compared with other conditions available in the literature can be obtained, at the price of increasing the associated computational effort. Numerical examples illustrate the advantages of the proposed methodology. © The Institution of Engineering and Technology 2013.
dc.description7
dc.description12
dc.description1665
dc.description1674
dc.descriptionJi, Y., Chizeck, H.J., Controllability, stabilizability and continuoustime markovian jump linear-quadratic control (1990) IEEE Trans. Autom. Control, 35 (7), pp. 777-788
dc.descriptionJi, Y., Chizeck, H.J., Jump linear quadratic gaussian control: Steadystate and testable conditions (1990) Control Theory Adv. Technol, 6, pp. 289-319
dc.descriptionFeng, X., Loparo, K.A., Ji, Y., Chizeck, H.J., Stochastic stability properties of jump linear systems (1992) IEEE Trans. Autom. Control, 37 (1), pp. 38-53
dc.descriptionCosta, O.L.V., Fragoso, M.D., Stability results for discrete-time linear systems with markovian jumping parameters (1993) J. Math. Anal. Appl, 179, pp. 154-178
dc.descriptionCosta, O.L.V., Fragoso, M.D., Discrete-time lq-optimal control problems for infinite markov jump parameter systems (1995) IEEE Trans. Autom. Control, 40 (12), pp. 2076-2088
dc.descriptionCosta, O.L.V., Do Val, J.B.R., Geromel, J.C., A convex programming approach to h2-control of discrete-time markovian jump linear systems (1997) Int. J. Control, 66 (4), pp. 557-579
dc.descriptionCosta, O.L.V., Assumpção Filho, E.O., Boukas, E.K., Marques, R.P., Constrained quadratic state feedback control of discrete-time markovian jump linear systems (1999) Automatica, 35 (4), pp. 617-626
dc.descriptionBoukas, E.K., (2005) Stochastic Switching Systems: Analysis and Design, , Birkhäuser, Berlin, Germany
dc.descriptionCosta, O.L.V., Fragoso, M.D., Marques, R.P., (2005) Discrete-Time Markovian Jump Linear Systems, , Springer-Verlag, New York, NY, USA
dc.descriptionVargas, A.N., Furloni, W., Do Val, J.B.R., Control of observed markov jump linear systems with constraints on state and input: A necessary optimality condition (2007) Proc. Third IFAC Symp. System, Structure and Control (SSSC07), pp. 250-255. , Foz do Iguassu, PR, Brazil, October
dc.descriptionYang, T., Networked control system: A brief survey (2006) IET Control Theory Appl, 153 (4), pp. 403-412
dc.descriptionZhang, L., Gao, H., Kaynak, O., Network-induced constraints in networked control systems -A survey (2013) IEEE Trans. Ind. Inf, 9 (1), pp. 403-416
dc.descriptionXiong, J., Lam, J., Gao, H., Ho, D.W.C., On robust stabilization of markovian jump systems with uncertain switching probabilities (2005) Automatica, 41 (5), pp. 897-903
dc.descriptionDe Souza, C.E., Robust stability and stabilization of uncertain discretetime markovian jump linear systems (2006) IEEE Trans. Autom. Control, 51 (5), pp. 836-841
dc.descriptionKaran, M., Shi, P., Kaya, C.Y., Transition probability bounds for the stochastic stability robustness of continuous-and discretetime markovian jump linear systems (2006) Automatica, 42, pp. 2159-2168
dc.descriptionOliveira, R.C.L.F., Vargas, A.N., Do Val, J.B.R., Peres, P.L.D., Robust stability, h2 analysis and stabilisation of discrete-time markov jump linear systems with uncertain probability matrix (2009) Int. J. Control, 82 (3), pp. 470-481
dc.descriptionBoukas, E.K., Guaranteed cost for stochastic systems with unknown transition jump rate (2009) Proc. 2009 American Control Conf., pp. 4422-4427. , St. Louis, MO, USA, June
dc.descriptionXiong, J., Lam, J., Robust h2 control of markovian jump systems with uncertain switching probabilities (2009) Int. J. Syst. Sci, 40 (3), pp. 255-265
dc.descriptionLuan, X., Liu, F., Shi, P., Finite-time filtering for non-linear stochastic systems with partially known transition jump rates (2010) IET Control Theory Appl, 4 (5), pp. 735-745
dc.descriptionMa, S., Boukas, E.K., Chinniah, Y., Stability and stabilization of discrete-time singular markov jump systems with time-varying delay (2010) Int. J. Robust Nonlinear Control, 20 (5), pp. 531-543
dc.descriptionMa, S., Zhang, C., Zhu, S., Robust stability for discrete-time uncertain singular markov jump systems with actuator saturation (2011) IET Control Theory Appl, 5 (2), pp. 255-262
dc.descriptionShen, M., Yang, G.-H., New analysis and synthesis conditions for continuous markov jump linear systems with partly known transition probabilities (2012) IET Control Theory Appl, 6 (14), pp. 2318-2325
dc.descriptionZhang, L., Boukas, E.K., Stability and stabilization of markovian jump linear systems with partly unknown transition probabilities (2009) Automatica, 45 (2), pp. 463-468
dc.descriptionZhang, L., Boukas, E.K., H∞ control of a class of extended markov jump linear systems (2009) IET Control Theory Appl, 3 (7), pp. 834-842
dc.descriptionZuo, Z., Liu, Y., Wang, Y., Li, H., Finite-time stochastic stability and stabilisation of linear discrete-time markovian jump systems with partly unknown transition probabilities (2012) IET Control Theory Appl, 6 (10), pp. 1522-1526
dc.descriptionZhang, Y., He, Y., Wu, M., Zhang, J., State estimation for markovian jump systems with time-varying delay and partial information on transition probabilities (2012) IET Control Theory Appl, 6 (16), pp. 2549-2555
dc.descriptionOliveira, R.C.L.F., Bliman, P.-A., Peres, P.L.D., Robust lmis with parameters in multi-simplex: Existence of solutions and applications (2008) Proc. 47th IEEE Conf. Decision and Control, pp. 2226-2231. , Cancun, Mexico, December
dc.descriptionDo Val, J.B.R., Geromel, J.C., Gonçalves, A.P., The h2-control for jump linear systems: Cluster observations of the markov state (2002) Automatica, 38 (2), pp. 343-349
dc.descriptionBraga, M.F., Morais, C.F., Oliveira, R.C.L.F., Peres, P.L.D., Robust stability and stabilization of discrete-time markov jump linear systems with partly unknown transition probability matrix (2013) Proc. 2013 American Control Conf., pp. 6800-6805. , Washington DC USA June
dc.descriptionLöfberg, J., Yalmip: A toolbox for modeling and optimization in matlab (2004) Proc. 2004 IEEE Int. Symp. Computer Aided Control Systems Design, pp. 284-289. , http://control.ee.ethz.ch/~joloef/yalmip.php, Taipei, Taiwan, September
dc.descriptionSturm, J.F., Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones (1999) Optim. Methods Softw, 11 (1-4), pp. 625-653. , http://sedumi.ie.lehigh.edu
dc.descriptionBoukas, E.K., H∞ control of discrete-time markov jump systems with bounded transition probabilities (2009) Optim. Control Appl. Methods, 30 (5), pp. 477-494
dc.descriptionZhang, L., Boukas, E.K., Mode-dependent filtering for discretetime markovian jump linear systems with partly unknown transition probabilities (2009) Automatica, 45 (6), pp. 1462-1467
dc.descriptionBliman, P.-A., An existence result for polynomial solutions of parameter-dependent lmis (2004) Syst. Control Lett, 51 (3-4), pp. 165-169
dc.descriptionOliveira, R.C.L.F., Peres, P.L.D., Parameter-dependent lmis in robust analysis: Characterization of homogeneous polynomially parameterdependent solutions via lmi relaxations (2007) IEEE Trans. Autom. Control, 52 (7), pp. 1334-1340
dc.descriptionScherer, C.W., Higher-order relaxations for robust lmi problems with verifications for exactness (2003) Proc. 42nd IEEE Conf. Decision and Control, pp. 4652-4657. , Maui, HI, USA, December
dc.descriptionScherer, C.W., Relaxations for robust linear matrix inequality problems with verifications for exactness (2005) SIAM J. Matrix Anal. Appl, 27 (2), pp. 365-395
dc.descriptionBoyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V., Linear matrix inequalities in system and control theory (1994) SIAM Studies in Applied Mathematics, p. 39. , Philadelphia, PA
dc.descriptionGahinet, P., Apkarian, P., A linear matrix inequality approach to h∞ control (1994) Int. J. Robust Nonlinear Control, 4 (4), pp. 421-448
dc.descriptionIwasaki, T., Skelton, R.E., All controllers for the general h∞ control problem: Lmi existence conditions and state-space formulas (1994) Automatica, 30 (8), pp. 1307-1317
dc.descriptionPipeleers, G., Demeulenaere, B., Swevers, J., Vandenberghe, L., Extended lmi characterizations for stability and performance of linear systems (2009) Syst. Control Lett, 58 (7), pp. 510-518
dc.descriptionBlair, W.P., Sworder, D.D., Feedback control of a class of linear discrete systems with jump parameters and quadratic cost criteria (1975) Int. J. Control, 21 (5), pp. 833-841
dc.languageen
dc.publisher
dc.relationIET Control Theory and Applications
dc.rightsfechado
dc.sourceScopus
dc.titleH2 Control Of Discrete-time Markov Jump Linear Systems With Uncertain Transition Probability Matrix: Improved Linear Matrix Inequality Relaxations And Multi-simplex Modelling
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución