Artículos de revistas
New Estimates For The Div, Curl, Grad Operators And Elliptic Problems With L1-data In The Half-space
Registro en:
Applied Mathematics Letters. , v. 24, n. 5, p. 697 - 702, 2011.
8939659
10.1016/j.aml.2010.12.008
2-s2.0-79551495179
Autor
Amrouche C.
Nguyen H.H.
Institución
Resumen
In this Note, we study some properties of the div, curl, grad operators and elliptic problems in the half-space. We consider data in weighted Sobolev spaces and in L1. © 2011 Elsevier Ltd. All rights reserved. 24 5 697 702 Amrouche, C., Girault, V., Giroire, J., Weighted Sobolev spaces for the Laplace equation in Rn (1994) Journal de Mathematiques Pures et Appliquees, 73 (6), pp. 579-606 Bourgain, J., Brzis, H., On the equation div Y=f and application to control of phases (2002) Journal of the American Mathematical Society, 16 (2), pp. 393-426 Bourgain, J., Brzis, H., New estimates for elliptic equations and Hodge type systems (2007) Journal of the European Mathematical Society, 9 (2), pp. 277-315 Brzis, H., Schaftingen, J.V., Boundary estimates for elliptic systems with L1-data (2007) Calculus of Variations and Partial Differential Equations, 30 (3), pp. 369-388 Amrouche, C., Neasov, S., Laplace equation in the half-space with a nonhomogeneous Dirichlet boundary condition (2001) Acta Mathematica Scientia, 126 (2), pp. 265-274 Van Schaftingen, J., Estimates for L1-vector fields (2004) Comptes Rendus de l'Acadmie des Sciences. Srie i, 339, pp. 181-186 Girault, V., The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of R3 (1992) Journal of the Faculty of Science, the University of Tokyo, Section IA, 39 (2), pp. 279-307 Amrouche, C., The Neumann problem in the half-space (2002) Comptes Rendus de l'Acadmie des Sciences. Srie i, 335, pp. 151-156