dc.creatorAmrouche C.
dc.creatorNguyen H.H.
dc.date2011
dc.date2015-06-30T20:40:50Z
dc.date2015-11-26T14:53:22Z
dc.date2015-06-30T20:40:50Z
dc.date2015-11-26T14:53:22Z
dc.date.accessioned2018-03-28T22:05:16Z
dc.date.available2018-03-28T22:05:16Z
dc.identifier
dc.identifierApplied Mathematics Letters. , v. 24, n. 5, p. 697 - 702, 2011.
dc.identifier8939659
dc.identifier10.1016/j.aml.2010.12.008
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79551495179&partnerID=40&md5=f0033bc5cc9bf4e32c13e293c5825031
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108866
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108866
dc.identifier2-s2.0-79551495179
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254950
dc.descriptionIn this Note, we study some properties of the div, curl, grad operators and elliptic problems in the half-space. We consider data in weighted Sobolev spaces and in L1. © 2011 Elsevier Ltd. All rights reserved.
dc.description24
dc.description5
dc.description697
dc.description702
dc.descriptionAmrouche, C., Girault, V., Giroire, J., Weighted Sobolev spaces for the Laplace equation in Rn (1994) Journal de Mathematiques Pures et Appliquees, 73 (6), pp. 579-606
dc.descriptionBourgain, J., Brzis, H., On the equation div Y=f and application to control of phases (2002) Journal of the American Mathematical Society, 16 (2), pp. 393-426
dc.descriptionBourgain, J., Brzis, H., New estimates for elliptic equations and Hodge type systems (2007) Journal of the European Mathematical Society, 9 (2), pp. 277-315
dc.descriptionBrzis, H., Schaftingen, J.V., Boundary estimates for elliptic systems with L1-data (2007) Calculus of Variations and Partial Differential Equations, 30 (3), pp. 369-388
dc.descriptionAmrouche, C., Neasov, S., Laplace equation in the half-space with a nonhomogeneous Dirichlet boundary condition (2001) Acta Mathematica Scientia, 126 (2), pp. 265-274
dc.descriptionVan Schaftingen, J., Estimates for L1-vector fields (2004) Comptes Rendus de l'Acadmie des Sciences. Srie i, 339, pp. 181-186
dc.descriptionGirault, V., The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of R3 (1992) Journal of the Faculty of Science, the University of Tokyo, Section IA, 39 (2), pp. 279-307
dc.descriptionAmrouche, C., The Neumann problem in the half-space (2002) Comptes Rendus de l'Acadmie des Sciences. Srie i, 335, pp. 151-156
dc.languageen
dc.publisher
dc.relationApplied Mathematics Letters
dc.rightsfechado
dc.sourceScopus
dc.titleNew Estimates For The Div, Curl, Grad Operators And Elliptic Problems With L1-data In The Half-space
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución