Artículos de revistas
Lie Algebras With Complex Structures Having Nilpotent Eigenspaces
Registro en:
Proyecciones. , v. 30, n. 2, p. 247 - 263, 2011.
7160917
2-s2.0-80855165423
Autor
Santos E.C.L.
Martin L.A.B.S.
Institución
Resumen
Let (g, [·,]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g, [*]J) with bracket [X * Y]J = 1/2 ([X, Y] - [JX, J Y]). We consider here the case where these subalgebras are nilpotent and prove that the original (g, [·,]) Lie algebra must be solvable. We consider also the 6-dimensional case and determine explicitly the possible nilpotent Lie algebras (g, [*]J). Finally we produce several examples illustrating different situations, in particular we show that for each given s there exists g with complex structure J such that (g, [*]J) is s-step nilpotent. Similar examples of hypercomplex structures are also built. 30 2 247 263 Andrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P., Product Structures on Four Dimensional Solvable Lie algebras (2005) Homology, Homotopy and Applications, 7, pp. 9-37 Barberis, M.L., Dotti, I., Abelian Complex Structures on Solvable Lie Algebras (2004) J. Lie Theory, 14, pp. 25-34 Bartolomeis, P., (2005) Z2 and Z-Deformation Theory for Holomorphic and Symplectic Manifolds, pp. 75-103. , Complex, contact and symmetric manifolds, Progr. Math., 234 Birkhäuser Boston, Boston, MA Borel, A., Groupes Linéaires Algébriques (1956) Ann. of Math, 64, pp. 20-82 Cordero, L.A., Fernandez, M., Gray, A., Ugarte, L., Nilpotent Complex Structures (2001) Rev. R. Acad. Cien. Serie A. Mat, 95 (1), pp. 45-55 Dotti, I., Fino, A., Abelian Hypercomplex 8-Dimensional Nilmanifolds (2000) Ann. Global Anal. Geom, 18, pp. 47-59 Dotti, I., Fino, A., Hypercomplex Eight-Dimensional Nilpotent Lie Groups (2003) J. Pure Appl. Algebra, 184, pp. 41-57 Dotti, I., Fino, A., Hypercomplex Nilpotent Lie Groups (2001) Contemp. Math, 288, pp. 310-314 Dotti, I., Fino, A., HyperKahler Torsion Structures Invariant by Nilpotent Lie Groups (2002) Class. Quantum Grav., 19, pp. 551-562 Goto, M., Note on a Characterization of Solvable Lie Algebras (1962) J. Sci. Hiroshima Univ. Ser. A-I, 26, pp. 1-2 Michael, A.A.G., On the Conjugacy Theorem of Cartan Subalgebras (2002) Hiroshima Math. J., 32, pp. 155-163 Petravchuk, P., Lie algebras Decomposable as Sum of an Abelian and a Nilpotent subalgebra (1988) Ukr. Math. J., 40, pp. 385-388 Salamon, S., Complex Structures on Nilpotent Lie Algebras (2001) J. Pure appl. Algebra, 157, pp. 311-333 San Martin, L.A.B., (1999) álgebras de Lie, , Editora da Unicamp Serre, J.P., (1987) Complex Semisimple Lie Algebras, , Springer-Verlag, New York