Brasil
| Artículos de revistas
Lie Algebras With Complex Structures Having Nilpotent Eigenspaces
dc.creator | Santos E.C.L. | |
dc.creator | Martin L.A.B.S. | |
dc.date | 2011 | |
dc.date | 2015-06-30T20:40:21Z | |
dc.date | 2015-11-26T14:53:18Z | |
dc.date | 2015-06-30T20:40:21Z | |
dc.date | 2015-11-26T14:53:18Z | |
dc.date.accessioned | 2018-03-28T22:05:13Z | |
dc.date.available | 2018-03-28T22:05:13Z | |
dc.identifier | ||
dc.identifier | Proyecciones. , v. 30, n. 2, p. 247 - 263, 2011. | |
dc.identifier | 7160917 | |
dc.identifier | ||
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-80855165423&partnerID=40&md5=b66e98e0c71fe608f78bf1e07e030c6e | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/108838 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/108838 | |
dc.identifier | 2-s2.0-80855165423 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1254941 | |
dc.description | Let (g, [·,]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g, [*]J) with bracket [X * Y]J = 1/2 ([X, Y] - [JX, J Y]). We consider here the case where these subalgebras are nilpotent and prove that the original (g, [·,]) Lie algebra must be solvable. We consider also the 6-dimensional case and determine explicitly the possible nilpotent Lie algebras (g, [*]J). Finally we produce several examples illustrating different situations, in particular we show that for each given s there exists g with complex structure J such that (g, [*]J) is s-step nilpotent. Similar examples of hypercomplex structures are also built. | |
dc.description | 30 | |
dc.description | 2 | |
dc.description | 247 | |
dc.description | 263 | |
dc.description | Andrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P., Product Structures on Four Dimensional Solvable Lie algebras (2005) Homology, Homotopy and Applications, 7, pp. 9-37 | |
dc.description | Barberis, M.L., Dotti, I., Abelian Complex Structures on Solvable Lie Algebras (2004) J. Lie Theory, 14, pp. 25-34 | |
dc.description | Bartolomeis, P., (2005) Z2 and Z-Deformation Theory for Holomorphic and Symplectic Manifolds, pp. 75-103. , Complex, contact and symmetric manifolds, Progr. Math., 234 Birkhäuser Boston, Boston, MA | |
dc.description | Borel, A., Groupes Linéaires Algébriques (1956) Ann. of Math, 64, pp. 20-82 | |
dc.description | Cordero, L.A., Fernandez, M., Gray, A., Ugarte, L., Nilpotent Complex Structures (2001) Rev. R. Acad. Cien. Serie A. Mat, 95 (1), pp. 45-55 | |
dc.description | Dotti, I., Fino, A., Abelian Hypercomplex 8-Dimensional Nilmanifolds (2000) Ann. Global Anal. Geom, 18, pp. 47-59 | |
dc.description | Dotti, I., Fino, A., Hypercomplex Eight-Dimensional Nilpotent Lie Groups (2003) J. Pure Appl. Algebra, 184, pp. 41-57 | |
dc.description | Dotti, I., Fino, A., Hypercomplex Nilpotent Lie Groups (2001) Contemp. Math, 288, pp. 310-314 | |
dc.description | Dotti, I., Fino, A., HyperKahler Torsion Structures Invariant by Nilpotent Lie Groups (2002) Class. Quantum Grav., 19, pp. 551-562 | |
dc.description | Goto, M., Note on a Characterization of Solvable Lie Algebras (1962) J. Sci. Hiroshima Univ. Ser. A-I, 26, pp. 1-2 | |
dc.description | Michael, A.A.G., On the Conjugacy Theorem of Cartan Subalgebras (2002) Hiroshima Math. J., 32, pp. 155-163 | |
dc.description | Petravchuk, P., Lie algebras Decomposable as Sum of an Abelian and a Nilpotent subalgebra (1988) Ukr. Math. J., 40, pp. 385-388 | |
dc.description | Salamon, S., Complex Structures on Nilpotent Lie Algebras (2001) J. Pure appl. Algebra, 157, pp. 311-333 | |
dc.description | San Martin, L.A.B., (1999) álgebras de Lie, , Editora da Unicamp | |
dc.description | Serre, J.P., (1987) Complex Semisimple Lie Algebras, , Springer-Verlag, New York | |
dc.language | en | |
dc.publisher | ||
dc.relation | Proyecciones | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Lie Algebras With Complex Structures Having Nilpotent Eigenspaces | |
dc.type | Artículos de revistas |