Brasil | Artículos de revistas
dc.creatorSantos E.C.L.
dc.creatorMartin L.A.B.S.
dc.date2011
dc.date2015-06-30T20:40:21Z
dc.date2015-11-26T14:53:18Z
dc.date2015-06-30T20:40:21Z
dc.date2015-11-26T14:53:18Z
dc.date.accessioned2018-03-28T22:05:13Z
dc.date.available2018-03-28T22:05:13Z
dc.identifier
dc.identifierProyecciones. , v. 30, n. 2, p. 247 - 263, 2011.
dc.identifier7160917
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80855165423&partnerID=40&md5=b66e98e0c71fe608f78bf1e07e030c6e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108838
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108838
dc.identifier2-s2.0-80855165423
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254941
dc.descriptionLet (g, [·,]) be a Lie algebra with an integrable complex structure J. The ±i eigenspaces of J are complex subalgebras of gC isomorphic to the algebra (g, [*]J) with bracket [X * Y]J = 1/2 ([X, Y] - [JX, J Y]). We consider here the case where these subalgebras are nilpotent and prove that the original (g, [·,]) Lie algebra must be solvable. We consider also the 6-dimensional case and determine explicitly the possible nilpotent Lie algebras (g, [*]J). Finally we produce several examples illustrating different situations, in particular we show that for each given s there exists g with complex structure J such that (g, [*]J) is s-step nilpotent. Similar examples of hypercomplex structures are also built.
dc.description30
dc.description2
dc.description247
dc.description263
dc.descriptionAndrada, A., Barberis, M.L., Dotti, I.G., Ovando, G.P., Product Structures on Four Dimensional Solvable Lie algebras (2005) Homology, Homotopy and Applications, 7, pp. 9-37
dc.descriptionBarberis, M.L., Dotti, I., Abelian Complex Structures on Solvable Lie Algebras (2004) J. Lie Theory, 14, pp. 25-34
dc.descriptionBartolomeis, P., (2005) Z2 and Z-Deformation Theory for Holomorphic and Symplectic Manifolds, pp. 75-103. , Complex, contact and symmetric manifolds, Progr. Math., 234 Birkhäuser Boston, Boston, MA
dc.descriptionBorel, A., Groupes Linéaires Algébriques (1956) Ann. of Math, 64, pp. 20-82
dc.descriptionCordero, L.A., Fernandez, M., Gray, A., Ugarte, L., Nilpotent Complex Structures (2001) Rev. R. Acad. Cien. Serie A. Mat, 95 (1), pp. 45-55
dc.descriptionDotti, I., Fino, A., Abelian Hypercomplex 8-Dimensional Nilmanifolds (2000) Ann. Global Anal. Geom, 18, pp. 47-59
dc.descriptionDotti, I., Fino, A., Hypercomplex Eight-Dimensional Nilpotent Lie Groups (2003) J. Pure Appl. Algebra, 184, pp. 41-57
dc.descriptionDotti, I., Fino, A., Hypercomplex Nilpotent Lie Groups (2001) Contemp. Math, 288, pp. 310-314
dc.descriptionDotti, I., Fino, A., HyperKahler Torsion Structures Invariant by Nilpotent Lie Groups (2002) Class. Quantum Grav., 19, pp. 551-562
dc.descriptionGoto, M., Note on a Characterization of Solvable Lie Algebras (1962) J. Sci. Hiroshima Univ. Ser. A-I, 26, pp. 1-2
dc.descriptionMichael, A.A.G., On the Conjugacy Theorem of Cartan Subalgebras (2002) Hiroshima Math. J., 32, pp. 155-163
dc.descriptionPetravchuk, P., Lie algebras Decomposable as Sum of an Abelian and a Nilpotent subalgebra (1988) Ukr. Math. J., 40, pp. 385-388
dc.descriptionSalamon, S., Complex Structures on Nilpotent Lie Algebras (2001) J. Pure appl. Algebra, 157, pp. 311-333
dc.descriptionSan Martin, L.A.B., (1999) álgebras de Lie, , Editora da Unicamp
dc.descriptionSerre, J.P., (1987) Complex Semisimple Lie Algebras, , Springer-Verlag, New York
dc.languageen
dc.publisher
dc.relationProyecciones
dc.rightsaberto
dc.sourceScopus
dc.titleLie Algebras With Complex Structures Having Nilpotent Eigenspaces
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución