Artículos de revistas
κ-carrageenan-sodium Caseinate Microgel Production By Atomization: Critical Analysis Of The Experimental Procedure
Registration in:
Journal Of Food Engineering. , v. 104, n. 1, p. 123 - 133, 2011.
2608774
10.1016/j.jfoodeng.2010.12.004
2-s2.0-78751650543
Author
Perrechil F.A.
Sato A.C.K.
Cunha R.L.
Institutions
Abstract
The influence of atomization process to produce κ-carrageenan and κ-carrageenan/sodium caseinate microgels was studied experimentally (aspect ratio and particle size distribution) and theoretically (dimensionless parameters). Moreover, rheological behavior of microgel suspensions was evaluated to examine their potential application in food products. Experimental results demonstrated that the size of microgels was influenced by feed flow rate, compressed air flow rate and composition of solutions, while their shape depended on the viscosity and surface tension of biopolymer solutions. Regarding the dimensionless numbers, higher values of Reynolds number of liquid layer (Reλl) and Weber number (Wel) led to smaller particles, while the decrease of Ohnesorge number (Oh) was related to lower sphericity of microgels. Rheological behavior of suspensions depended on not only the morphology and size of microgels, but also their composition. Incompatibility between κ-carrageenan and sodium caseinate in mixed microgels led to suspensions with more complex rheological behavior at determined biopolymer concentrations. © 2010 Elsevier Ltd. All rights reserved. 104 1 123 133 Adams, S., Frith, W.J., Stokes, J.R., Influence of particle modulus on the rheological properties of agar microgel suspensions (2004) Journal of Rheology, 48 (6), pp. 1195-1213 Aliseda, A., Hopfinger, E.J., Lasheras, J.C., Kremer, D.M., Berchielli, A., Connolly, E.K., Atomization of viscous and non-newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling (2008) International Journal of Multiphase Flow, 34 (2), pp. 161-175 Annaka, M., Ogata, Y., Nakahira, T., Swelling behavior of covalently cross-linked gellan gels (2000) Journal of Physical Chemistry B, 104 (29), pp. 6755-6760 Arltoft, D., Ipsen, R., Madsen, F., De Vries, J., Interactions between carrageenans and milk proteins: A microstructural and rheological study (2007) Biomacromolecules, 8 (2), pp. 729-736 Barnes, H.A., Hutton, J.F., Walters, K., (1989) An Introduction to Rheology, , Elsevier Science Publishers Amsterdam Belyakova, L.E., Antipova, A.S., Semenova, M.G., Dickinson, E., Merino, L.M., Tsapkina, E.N., Effect of sucrose on molecular and interaction parameters of sodium caseinate in aqueous solution: Relationship to protein gelation (2003) Colloids and Surfaces B: Biointerfaces, 31 (14), pp. 31-46 Blandino, A., MacIas, M., Cantero, D., Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics (1999) Journal of Bioscience and Bioengineering, 88 (6), pp. 686-689 Bourriot, S., Garnier, C., Doublier, J.-L., Micellar-casein - κ-carrageenan mixtures I. Phase separation and ultrastructure (1999) Carbohydrate Polymers, 40 (2), pp. 145-157 Burey, P., Bhandari, B.R., Howes, T., Gidley, M.J., Hydrocolloid gel particles: Formation, characterization, and application (2008) Critical Reviews in Food Science and Nutrition, 48 (5), pp. 361-377 Chan, E.-S., Lee, B.-B., Ravindra, P., Poncelet, D., Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method (2009) Journal of Colloid and Interface Science, 338 (1), pp. 63-72 Channell, G.M., Zukoski, C.F., Shear and compressive rheology of aggregated alumina suspensions (1997) AIChE Journal, 43 (7), pp. 1700-1708 Dalgleish, D.G., Morris, E.R., Interactions between carrageenans and casein micelles: Electrophoretic and hydrodynamic properties of the particles (1988) Food Hydrocolloids, 2 (4), pp. 311-320 De Ruiter, G.A., Rudolph, B., Carrageenan biotechnology (1997) Trends in Food Science & Technology, 8 (12), pp. 389-395 Ellis, A., Jacquier, J.C., Manufacture of food grade κ-carrageenan microspheres (2009) Journal of Food Engineering, 94 (34), pp. 316-320 Ellis, A., Keppeler, S., Jacquier, J.C., Responsiveness of κ-carrageenan microgels to cationic surfactants and neutral salts (2009) Carbohydrate Polymers, 78 (3), pp. 384-388 Herrero, E.P., Martín Del Valle, E.M., Galán, M.A., Development of a new technology for the production of microcapsules based in atomization processes (2006) Chemical Engineering Journal, 117 (2), pp. 137-142 Hunik, J.H., Tramper, J., Large-scale production of κ-carrageenan droplets for gel-bead production: Theoretical and practical limitations of size and production rate (1993) Biotechnology Progress, 9 (2), pp. 186-192 Imeson, A.P., Carrageenan (2000) Handbook of Hydrocolloids Keppeler, S., Ellis, A., Jacquier, J.C., Cross-linked carrageenan beads for controlled release delivery systems (2009) Carbohydrate Polymers, 78 (4), pp. 973-977 Lai, V.M.F., Wong, P.A.-L., Lii, C.-Y., Effects of cation properties on sol-gel transition and gel properties of κ-carrageenan (2000) Journal of Food Science, 65 (8), pp. 1332-1337 Langendorff, V., Cuvelier, G., Launay, B., Parker, A., Gelation and flocculation of casein micelle/carrageenan mixtures (1997) Food Hydrocolloids, 11 (1), pp. 35-40 Lefebvre, A.H., (1989) Atomization and Sprays, , Taylor & Francis New York Lindström, S.B., Uesaka, T., Simulation of semidilute suspensions of non-Brownian fibers in shear flow (2008) Journal of Chemical Physics, 128 (2), pp. 0249011-02490114 Martin, A.H., Goff, H.D., Smith, A., Dalgleish, D.G., Immobilization of casein micelles for probing their structure and interactions with polysaccharides using scanning electron microscopy (SEM) (2006) Food Hydrocolloids, 20 (6), pp. 817-824 McClements, D.J., (2005) Food Emulsions: Principles, Practice and Techniques, , CRC Press New York Meunier, V., Nicolai, T., Durand, D., Structure of aggregating κ-carrageenan fractions studied by light scattering (2001) International Journal of Biological Macromolecules, 28 (2), pp. 157-165 Moe, S.T., Skjak-Braek, G., Elgsaeter, A., Smidsroed, O., Swelling of covalently crosslinked alginate gels: Influence of ionic solutes and nonpolar solvents (1993) Macromolecules, 26 (14), pp. 3589-3597 Morris, E.R., Rees, D.A., Robinson, G., Cation-specific aggregation of carrageenan helices: Domain model of polymer gel structure (1980) Journal of Molecular Biology, 138 (2), pp. 349-362 Nono, M., Nicolai, T., Durand, D., Gel formation of mixtures of κ-carrageenan and sodium caseinate Food Hydrocolloids, , press doi:10.1016/j.foodhyd.2010.07.014 Núñez-Santiago, M.C., Tecante, A., Rheological and calorimetric study of the sol-gel transition of κ-carrageenan (2007) Carbohydrate Polymers, 69 (4), pp. 763-773 Oakenfull, D., Miyoshi, E., Nishinari, K., Scott, A., Rheological and thermal properties of milk gels formed with κ-carrageenan I. Sodium caseinate (1999) Food Hydrocolloids, 13 (6), pp. 525-533 Pabst, W., Berthold, C., Gregorova, E., Size and shape characterization of polydisperse short-fiber systems (2006) Journal of the European Ceramic Society, 26 (7), pp. 1121-1130. , DOI 10.1016/j.jeurceramsoc.2005.01.053, PII S0955221905001020 Poncelet, D., Lencki, R., Beaulieu, C., Halle, J.P., Neufeld, R.J., Fournier, A., Production of alginate beads by emulsification/internal gelation. I. Methodology (1992) Applied Microbiology and Biotechnology, 38 (1), pp. 39-45 Reis, C.P., Neufeld, R.J., Vilela, S., Ribeiro, A.J., Veiga, F., Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles (2006) Journal of Microencapsulation, 23 (3), pp. 245-257 Ribeiro, K.O., Rodrigues, M.I., Sabadini, E., Cunha, R.L., Mechanical properties of acid sodium caseinate-κ-carrageenan gels: Effect of co-solute addition (2004) Food Hydrocolloids, 18 (1), pp. 71-79 Rizk, N.K., Lefebvre, A.H., The influence of liquid film thickness on airblast atomization (1980) Journal of Engineering for Power, 102 (7), pp. 706-710 Sabadini, E., Hubinger, M.D., Cunha, R.L., Stress relaxation of acid-induced milk gels Food and Bioprocess Technology, , in press doi:10.1007/s11947-010-0342-4 En, M., Erboz, E.N., Determination of critical gelation conditions of κ-carrageenan by viscosimetric and FT-IR analyses (2010) Food Research International, 43 (5), pp. 1361-1364 Smrdel, P., Bogataj, M., Zega, A., Planinsek, O., Mrhar, A., Shape optimization and characterization of polysaccharide beads prepared by ionotropic gelation (2008) Journal of Microencapsulation, 25 (2), pp. 90-105. , DOI 10.1080/02652040701776109, PII 788753619 Steffe, J.F., (1996) Rheological Methods in Food Process Engineering, , Freeman Press East Lansing Varga, C.M., Lasheras, J.C., Hopfinger, E.J., Initial breakup of a small-diameter liquid jet by a high-speed gas stream (2003) Journal of Fluid Mechanics, 497, pp. 405-434 Wolf, B., Frith, W.J., Singleton, S., Tassieri, M., Norton, I.T., Shear behavior of biopolymer suspensions with spheroidal and cylindrical particles (2001) Rheologica Acta, 40 (3), pp. 238-247 Zhang, J., Li, X., Zhang, D., Xiu, Z., Theoretical and experimental investigations on the size of alginate microspheres prepared by dropping and spraying (2007) Journal of Microencapsulation, 24 (4), pp. 303-322