dc.creator | Perrechil F.A. | |
dc.creator | Sato A.C.K. | |
dc.creator | Cunha R.L. | |
dc.date | 2011 | |
dc.date | 2015-06-30T20:38:08Z | |
dc.date | 2015-11-26T14:52:20Z | |
dc.date | 2015-06-30T20:38:08Z | |
dc.date | 2015-11-26T14:52:20Z | |
dc.date.accessioned | 2018-03-28T22:04:25Z | |
dc.date.available | 2018-03-28T22:04:25Z | |
dc.identifier | | |
dc.identifier | Journal Of Food Engineering. , v. 104, n. 1, p. 123 - 133, 2011. | |
dc.identifier | 2608774 | |
dc.identifier | 10.1016/j.jfoodeng.2010.12.004 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-78751650543&partnerID=40&md5=7a35a2abe1c74c7cea8ea65d44131181 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/108724 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/108724 | |
dc.identifier | 2-s2.0-78751650543 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1254803 | |
dc.description | The influence of atomization process to produce κ-carrageenan and κ-carrageenan/sodium caseinate microgels was studied experimentally (aspect ratio and particle size distribution) and theoretically (dimensionless parameters). Moreover, rheological behavior of microgel suspensions was evaluated to examine their potential application in food products. Experimental results demonstrated that the size of microgels was influenced by feed flow rate, compressed air flow rate and composition of solutions, while their shape depended on the viscosity and surface tension of biopolymer solutions. Regarding the dimensionless numbers, higher values of Reynolds number of liquid layer (Reλl) and Weber number (Wel) led to smaller particles, while the decrease of Ohnesorge number (Oh) was related to lower sphericity of microgels. Rheological behavior of suspensions depended on not only the morphology and size of microgels, but also their composition. Incompatibility between κ-carrageenan and sodium caseinate in mixed microgels led to suspensions with more complex rheological behavior at determined biopolymer concentrations. © 2010 Elsevier Ltd. All rights reserved. | |
dc.description | 104 | |
dc.description | 1 | |
dc.description | 123 | |
dc.description | 133 | |
dc.description | Adams, S., Frith, W.J., Stokes, J.R., Influence of particle modulus on the rheological properties of agar microgel suspensions (2004) Journal of Rheology, 48 (6), pp. 1195-1213 | |
dc.description | Aliseda, A., Hopfinger, E.J., Lasheras, J.C., Kremer, D.M., Berchielli, A., Connolly, E.K., Atomization of viscous and non-newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling (2008) International Journal of Multiphase Flow, 34 (2), pp. 161-175 | |
dc.description | Annaka, M., Ogata, Y., Nakahira, T., Swelling behavior of covalently cross-linked gellan gels (2000) Journal of Physical Chemistry B, 104 (29), pp. 6755-6760 | |
dc.description | Arltoft, D., Ipsen, R., Madsen, F., De Vries, J., Interactions between carrageenans and milk proteins: A microstructural and rheological study (2007) Biomacromolecules, 8 (2), pp. 729-736 | |
dc.description | Barnes, H.A., Hutton, J.F., Walters, K., (1989) An Introduction to Rheology, , Elsevier Science Publishers Amsterdam | |
dc.description | Belyakova, L.E., Antipova, A.S., Semenova, M.G., Dickinson, E., Merino, L.M., Tsapkina, E.N., Effect of sucrose on molecular and interaction parameters of sodium caseinate in aqueous solution: Relationship to protein gelation (2003) Colloids and Surfaces B: Biointerfaces, 31 (14), pp. 31-46 | |
dc.description | Blandino, A., MacIas, M., Cantero, D., Formation of calcium alginate gel capsules: Influence of sodium alginate and CaCl2 concentration on gelation kinetics (1999) Journal of Bioscience and Bioengineering, 88 (6), pp. 686-689 | |
dc.description | Bourriot, S., Garnier, C., Doublier, J.-L., Micellar-casein - κ-carrageenan mixtures I. Phase separation and ultrastructure (1999) Carbohydrate Polymers, 40 (2), pp. 145-157 | |
dc.description | Burey, P., Bhandari, B.R., Howes, T., Gidley, M.J., Hydrocolloid gel particles: Formation, characterization, and application (2008) Critical Reviews in Food Science and Nutrition, 48 (5), pp. 361-377 | |
dc.description | Chan, E.-S., Lee, B.-B., Ravindra, P., Poncelet, D., Prediction models for shape and size of ca-alginate macrobeads produced through extrusion-dripping method (2009) Journal of Colloid and Interface Science, 338 (1), pp. 63-72 | |
dc.description | Channell, G.M., Zukoski, C.F., Shear and compressive rheology of aggregated alumina suspensions (1997) AIChE Journal, 43 (7), pp. 1700-1708 | |
dc.description | Dalgleish, D.G., Morris, E.R., Interactions between carrageenans and casein micelles: Electrophoretic and hydrodynamic properties of the particles (1988) Food Hydrocolloids, 2 (4), pp. 311-320 | |
dc.description | De Ruiter, G.A., Rudolph, B., Carrageenan biotechnology (1997) Trends in Food Science & Technology, 8 (12), pp. 389-395 | |
dc.description | Ellis, A., Jacquier, J.C., Manufacture of food grade κ-carrageenan microspheres (2009) Journal of Food Engineering, 94 (34), pp. 316-320 | |
dc.description | Ellis, A., Keppeler, S., Jacquier, J.C., Responsiveness of κ-carrageenan microgels to cationic surfactants and neutral salts (2009) Carbohydrate Polymers, 78 (3), pp. 384-388 | |
dc.description | Herrero, E.P., Martín Del Valle, E.M., Galán, M.A., Development of a new technology for the production of microcapsules based in atomization processes (2006) Chemical Engineering Journal, 117 (2), pp. 137-142 | |
dc.description | Hunik, J.H., Tramper, J., Large-scale production of κ-carrageenan droplets for gel-bead production: Theoretical and practical limitations of size and production rate (1993) Biotechnology Progress, 9 (2), pp. 186-192 | |
dc.description | Imeson, A.P., Carrageenan (2000) Handbook of Hydrocolloids | |
dc.description | Keppeler, S., Ellis, A., Jacquier, J.C., Cross-linked carrageenan beads for controlled release delivery systems (2009) Carbohydrate Polymers, 78 (4), pp. 973-977 | |
dc.description | Lai, V.M.F., Wong, P.A.-L., Lii, C.-Y., Effects of cation properties on sol-gel transition and gel properties of κ-carrageenan (2000) Journal of Food Science, 65 (8), pp. 1332-1337 | |
dc.description | Langendorff, V., Cuvelier, G., Launay, B., Parker, A., Gelation and flocculation of casein micelle/carrageenan mixtures (1997) Food Hydrocolloids, 11 (1), pp. 35-40 | |
dc.description | Lefebvre, A.H., (1989) Atomization and Sprays, , Taylor & Francis New York | |
dc.description | Lindström, S.B., Uesaka, T., Simulation of semidilute suspensions of non-Brownian fibers in shear flow (2008) Journal of Chemical Physics, 128 (2), pp. 0249011-02490114 | |
dc.description | Martin, A.H., Goff, H.D., Smith, A., Dalgleish, D.G., Immobilization of casein micelles for probing their structure and interactions with polysaccharides using scanning electron microscopy (SEM) (2006) Food Hydrocolloids, 20 (6), pp. 817-824 | |
dc.description | McClements, D.J., (2005) Food Emulsions: Principles, Practice and Techniques, , CRC Press New York | |
dc.description | Meunier, V., Nicolai, T., Durand, D., Structure of aggregating κ-carrageenan fractions studied by light scattering (2001) International Journal of Biological Macromolecules, 28 (2), pp. 157-165 | |
dc.description | Moe, S.T., Skjak-Braek, G., Elgsaeter, A., Smidsroed, O., Swelling of covalently crosslinked alginate gels: Influence of ionic solutes and nonpolar solvents (1993) Macromolecules, 26 (14), pp. 3589-3597 | |
dc.description | Morris, E.R., Rees, D.A., Robinson, G., Cation-specific aggregation of carrageenan helices: Domain model of polymer gel structure (1980) Journal of Molecular Biology, 138 (2), pp. 349-362 | |
dc.description | Nono, M., Nicolai, T., Durand, D., Gel formation of mixtures of κ-carrageenan and sodium caseinate Food Hydrocolloids, , press doi:10.1016/j.foodhyd.2010.07.014 | |
dc.description | Núñez-Santiago, M.C., Tecante, A., Rheological and calorimetric study of the sol-gel transition of κ-carrageenan (2007) Carbohydrate Polymers, 69 (4), pp. 763-773 | |
dc.description | Oakenfull, D., Miyoshi, E., Nishinari, K., Scott, A., Rheological and thermal properties of milk gels formed with κ-carrageenan I. Sodium caseinate (1999) Food Hydrocolloids, 13 (6), pp. 525-533 | |
dc.description | Pabst, W., Berthold, C., Gregorova, E., Size and shape characterization of polydisperse short-fiber systems (2006) Journal of the European Ceramic Society, 26 (7), pp. 1121-1130. , DOI 10.1016/j.jeurceramsoc.2005.01.053, PII S0955221905001020 | |
dc.description | Poncelet, D., Lencki, R., Beaulieu, C., Halle, J.P., Neufeld, R.J., Fournier, A., Production of alginate beads by emulsification/internal gelation. I. Methodology (1992) Applied Microbiology and Biotechnology, 38 (1), pp. 39-45 | |
dc.description | Reis, C.P., Neufeld, R.J., Vilela, S., Ribeiro, A.J., Veiga, F., Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles (2006) Journal of Microencapsulation, 23 (3), pp. 245-257 | |
dc.description | Ribeiro, K.O., Rodrigues, M.I., Sabadini, E., Cunha, R.L., Mechanical properties of acid sodium caseinate-κ-carrageenan gels: Effect of co-solute addition (2004) Food Hydrocolloids, 18 (1), pp. 71-79 | |
dc.description | Rizk, N.K., Lefebvre, A.H., The influence of liquid film thickness on airblast atomization (1980) Journal of Engineering for Power, 102 (7), pp. 706-710 | |
dc.description | Sabadini, E., Hubinger, M.D., Cunha, R.L., Stress relaxation of acid-induced milk gels Food and Bioprocess Technology, , in press doi:10.1007/s11947-010-0342-4 | |
dc.description | En, M., Erboz, E.N., Determination of critical gelation conditions of κ-carrageenan by viscosimetric and FT-IR analyses (2010) Food Research International, 43 (5), pp. 1361-1364 | |
dc.description | Smrdel, P., Bogataj, M., Zega, A., Planinsek, O., Mrhar, A., Shape optimization and characterization of polysaccharide beads prepared by ionotropic gelation (2008) Journal of Microencapsulation, 25 (2), pp. 90-105. , DOI 10.1080/02652040701776109, PII 788753619 | |
dc.description | Steffe, J.F., (1996) Rheological Methods in Food Process Engineering, , Freeman Press East Lansing | |
dc.description | Varga, C.M., Lasheras, J.C., Hopfinger, E.J., Initial breakup of a small-diameter liquid jet by a high-speed gas stream (2003) Journal of Fluid Mechanics, 497, pp. 405-434 | |
dc.description | Wolf, B., Frith, W.J., Singleton, S., Tassieri, M., Norton, I.T., Shear behavior of biopolymer suspensions with spheroidal and cylindrical particles (2001) Rheologica Acta, 40 (3), pp. 238-247 | |
dc.description | Zhang, J., Li, X., Zhang, D., Xiu, Z., Theoretical and experimental investigations on the size of alginate microspheres prepared by dropping and spraying (2007) Journal of Microencapsulation, 24 (4), pp. 303-322 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Journal of Food Engineering | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | κ-carrageenan-sodium Caseinate Microgel Production By Atomization: Critical Analysis Of The Experimental Procedure | |
dc.type | Artículos de revistas | |