Artículos de revistas
Extending The Kinetic Solution Of The Classic Michaelis-menten Model Of Enzyme Action
Registro en:
Journal Of Mathematical Chemistry. , v. 49, n. 9, p. 1976 - 1995, 2011.
2599791
10.1007/s10910-011-9869-5
2-s2.0-80052259534
Autor
Bispo J.A.C.
Bonafe C.F.S.
de Souza V.B.
de Almeida e Silva J.B.
de Carvalho G.B.M.
Institución
Resumen
The principal aim of studies of enzyme-mediated reactions has been to provide comparative and quantitative information on enzyme-catalyzed reactions under distinct conditions. The classic Michaelis-Menten model (Biochem Zeit 49:333, 1913) for enzyme kinetic has been widely used to determine important parameters involved in enzyme catalysis, particularly the Michaelis-Menten constant (K M) and the maximum velocity of reaction (V max). Subsequently, a detailed treatment of the mechanisms of enzyme catalysis was undertaken by Briggs-Haldane (Biochem J 19:338, 1925). These authors proposed the steady-state treatment, since its applicability was constrained to this condition. The present work describes an extending solution of the Michaelis-Menten model without the need for such a steady-state restriction. We provide the first analysis of all of the individual reaction constants calculated analytically. Using this approach, it is possible to accurately predict the results under new experimental conditions and to characterize and optimize industrial processes in the fields of chemical and food engineering, pharmaceuticals and biotechnology. © 2011 Springer Science+Business Media, LLC. 49 9 1976 1995 O'Sulivan, C., Tompson, S.W., (1890) J. Chem. Soc. Faraday Trans., 57, p. 834 Cornish-Bowden, A., (2004) Fundamentals of Enzyme Kinetics, , London: Portland Press Brown, G.C., (1892) J. Chem. Soc. Faraday Trans., 61, p. 369 Henri, V., (1902) CR. Hebd. Seanc. Acad. Sci., 135, p. 916 Henri, V., (1903) Lois Générale De l'action De Diastase, , Paris: Hermann Michaelis, L., Menten, M.L., (1913) Biochem. Zeit., 49, p. 333 Briggs, G., Haldane, J., (1925) Biochem. J., 19, p. 338 Gibson, Q.H., (1969) Method. Enzymol., 16, p. 187 Ajila, C., Rao, U., (2009) J. Mol. Catal. B Enzym., 60, p. 36 Leon, J.C., Alpeeva, I.S., Chubar, T.A., Galaev, I.Y., Csoregi, E., Sakharov, I.Y., (2002) Plant Sci., 163, p. 1011 Carvalho, A.S.L., Melo, E.P.E., Ferreira, B.S., Neves-Petersen, M.T., Petersen, S.B., Aires-Barros, M.R., (2003) Arch. Biochem. Biophys., 415, p. 257 Wang, L., Burhenne, K., Kristensen, B., Rasmussen, S., (2004) Gene, 343, p. 323 Johri, S., Jamwal, U., Rasool, S., Kumar, A., Verma, V., Qazi, G.N., (2005) Plant Sci., 169, p. 1014 Rosenthal, A., Ledward, D., Defaye, A., Gilmour, S., Trinca, L., (2002) Trends HP Biosci. Biotech., 19, p. 525 Agostini, E., Hernandez-Ruiz, J., Arnão, M.B., Milrand, S.R., Tigier, H.A., Acosta, M., (2002) Biotechnol. Appl. Biochem., 35, p. 1 Morales-Blancas, E., Chandia, V., Cisneros-Zevallos, L., (2002) J. Food Sci., 67, p. 146 Antonini, E., Brunori, M., (1971) Hemoglobin and Myoblobin in Their Reactions with Ligands, , London: North Holland Publishing Company Aibara, S., Yamashita, H., Mori, E., Kato, M., Morita, Y., (1982) J. Biochem., 92, p. 531 Kreyszig, E., (2009) Matemática Superior Para Engenharia, , Rio de Janeiro: LTC Schmidell, W., Lima, U.A., Aquarone, E., Borzani, W., (2001) Industrial Biotechnology, , São Paulo: Ed. Edgar Blücher Monod, J., The growth of bacterial cultures (1949) Annu. Rev. Microbiol., 3, p. 371 Fonseca, M., Teixeira, J.A., (2007) Reactores Biológicos, , Lisboa, Porto: Lidel Silva, D., Branyik, T., Dragone, G., Vicente, A.A., Teixeira, J.A., Silva, J.B.A., (2008) Chem. Pap., 62, p. 34 Carvalho, G.B.M., Silva, D.P., Bento, C.V., Vicente, A.A., Teixeira, J.A., Felipe, M.G., Silva, J.B.A., (2009) Appl. Biochem. Biotechnol., 155, p. 55 Lineweaver, H., Burk, D., (1934) J. Am. Chem. Soc., 56, p. 658