dc.creatorBispo J.A.C.
dc.creatorBonafe C.F.S.
dc.creatorde Souza V.B.
dc.creatorde Almeida e Silva J.B.
dc.creatorde Carvalho G.B.M.
dc.date2011
dc.date2015-06-30T20:38:07Z
dc.date2015-11-26T14:52:15Z
dc.date2015-06-30T20:38:07Z
dc.date2015-11-26T14:52:15Z
dc.date.accessioned2018-03-28T22:04:19Z
dc.date.available2018-03-28T22:04:19Z
dc.identifier
dc.identifierJournal Of Mathematical Chemistry. , v. 49, n. 9, p. 1976 - 1995, 2011.
dc.identifier2599791
dc.identifier10.1007/s10910-011-9869-5
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80052259534&partnerID=40&md5=65fdad7c8a578b1257ffdde86437c0e0
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108723
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108723
dc.identifier2-s2.0-80052259534
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254787
dc.descriptionThe principal aim of studies of enzyme-mediated reactions has been to provide comparative and quantitative information on enzyme-catalyzed reactions under distinct conditions. The classic Michaelis-Menten model (Biochem Zeit 49:333, 1913) for enzyme kinetic has been widely used to determine important parameters involved in enzyme catalysis, particularly the Michaelis-Menten constant (K M) and the maximum velocity of reaction (V max). Subsequently, a detailed treatment of the mechanisms of enzyme catalysis was undertaken by Briggs-Haldane (Biochem J 19:338, 1925). These authors proposed the steady-state treatment, since its applicability was constrained to this condition. The present work describes an extending solution of the Michaelis-Menten model without the need for such a steady-state restriction. We provide the first analysis of all of the individual reaction constants calculated analytically. Using this approach, it is possible to accurately predict the results under new experimental conditions and to characterize and optimize industrial processes in the fields of chemical and food engineering, pharmaceuticals and biotechnology. © 2011 Springer Science+Business Media, LLC.
dc.description49
dc.description9
dc.description1976
dc.description1995
dc.descriptionO'Sulivan, C., Tompson, S.W., (1890) J. Chem. Soc. Faraday Trans., 57, p. 834
dc.descriptionCornish-Bowden, A., (2004) Fundamentals of Enzyme Kinetics, , London: Portland Press
dc.descriptionBrown, G.C., (1892) J. Chem. Soc. Faraday Trans., 61, p. 369
dc.descriptionHenri, V., (1902) CR. Hebd. Seanc. Acad. Sci., 135, p. 916
dc.descriptionHenri, V., (1903) Lois Générale De l'action De Diastase, , Paris: Hermann
dc.descriptionMichaelis, L., Menten, M.L., (1913) Biochem. Zeit., 49, p. 333
dc.descriptionBriggs, G., Haldane, J., (1925) Biochem. J., 19, p. 338
dc.descriptionGibson, Q.H., (1969) Method. Enzymol., 16, p. 187
dc.descriptionAjila, C., Rao, U., (2009) J. Mol. Catal. B Enzym., 60, p. 36
dc.descriptionLeon, J.C., Alpeeva, I.S., Chubar, T.A., Galaev, I.Y., Csoregi, E., Sakharov, I.Y., (2002) Plant Sci., 163, p. 1011
dc.descriptionCarvalho, A.S.L., Melo, E.P.E., Ferreira, B.S., Neves-Petersen, M.T., Petersen, S.B., Aires-Barros, M.R., (2003) Arch. Biochem. Biophys., 415, p. 257
dc.descriptionWang, L., Burhenne, K., Kristensen, B., Rasmussen, S., (2004) Gene, 343, p. 323
dc.descriptionJohri, S., Jamwal, U., Rasool, S., Kumar, A., Verma, V., Qazi, G.N., (2005) Plant Sci., 169, p. 1014
dc.descriptionRosenthal, A., Ledward, D., Defaye, A., Gilmour, S., Trinca, L., (2002) Trends HP Biosci. Biotech., 19, p. 525
dc.descriptionAgostini, E., Hernandez-Ruiz, J., Arnão, M.B., Milrand, S.R., Tigier, H.A., Acosta, M., (2002) Biotechnol. Appl. Biochem., 35, p. 1
dc.descriptionMorales-Blancas, E., Chandia, V., Cisneros-Zevallos, L., (2002) J. Food Sci., 67, p. 146
dc.descriptionAntonini, E., Brunori, M., (1971) Hemoglobin and Myoblobin in Their Reactions with Ligands, , London: North Holland Publishing Company
dc.descriptionAibara, S., Yamashita, H., Mori, E., Kato, M., Morita, Y., (1982) J. Biochem., 92, p. 531
dc.descriptionKreyszig, E., (2009) Matemática Superior Para Engenharia, , Rio de Janeiro: LTC
dc.descriptionSchmidell, W., Lima, U.A., Aquarone, E., Borzani, W., (2001) Industrial Biotechnology, , São Paulo: Ed. Edgar Blücher
dc.descriptionMonod, J., The growth of bacterial cultures (1949) Annu. Rev. Microbiol., 3, p. 371
dc.descriptionFonseca, M., Teixeira, J.A., (2007) Reactores Biológicos, , Lisboa, Porto: Lidel
dc.descriptionSilva, D., Branyik, T., Dragone, G., Vicente, A.A., Teixeira, J.A., Silva, J.B.A., (2008) Chem. Pap., 62, p. 34
dc.descriptionCarvalho, G.B.M., Silva, D.P., Bento, C.V., Vicente, A.A., Teixeira, J.A., Felipe, M.G., Silva, J.B.A., (2009) Appl. Biochem. Biotechnol., 155, p. 55
dc.descriptionLineweaver, H., Burk, D., (1934) J. Am. Chem. Soc., 56, p. 658
dc.languageen
dc.publisher
dc.relationJournal of Mathematical Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleExtending The Kinetic Solution Of The Classic Michaelis-menten Model Of Enzyme Action
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución