Artículos de revistas
A Backward λ-lemma For The Forward Heat Flow
Registro en:
Mathematische Annalen. Springer New York Llc, v. 359, n. 03/04/15, p. 929 - 967, 2014.
255831
10.1007/s00208-014-1026-6
2-s2.0-84904416139
Autor
Weber J.
Institución
Resumen
The inclination or λ-lemma is a fundamental tool in finite dimensional hyperbolic dynamics. In contrast to finite dimension, we consider the forward semi-flow on the loop space of a closed Riemannian manifold M provided by the heat flow. The main result is a backward λ-lemma for the heat flow near a hyperbolic fixed point x. There are the following novelties. Firstly, infinite versus finite dimension. Secondly, semi-flow versus flow. Thirdly, suitable adaption provides a new proof in the finite dimensional case. Fourthly and a priori most surprisingly, our λ-lemma moves the given disk transversal to the unstable manifold backward in time, although there is no backward flow. As a first application we propose a new method to calculate the Conley homotopy index of x. © 2014 Springer-Verlag Berlin Heidelberg. 359 03/04/15 929 967 Abbondandolo, A., Majer, P., Lectures on the Morse complex for infinite dimensional manifolds, in Morse theoretic methods in nonlinear analysis and in symplectic topology (2006) NATO Science Series II: Mathematics, Physics and Chemistry, pp. 1-74. , In: Biran, P., Cornea, O., Lalonde, F. (eds.) Springer, New York Chow, S.-N., Hale, J.K., Methods of bifurcation theory (1996) Grundlehren Math. Wissensch., 251. , (Springer, 1982, corrected second printing) Chow, S.-N., Lin, X.-B., Lu, K., Smooth invariant foliations in infinite dimensional spaces (1991) J. Differ. Equ., 94, pp. 266-291 Conley, C.C., Isolated invariant sets and the Morse index (1978) In: CBMS Regional Conference Series in Mathematics, 38. , American Mathematical Society, Providence Grobman, D., Homeomorphisms of systems of differential equations (1959) Dokl. Akad. Nauk. SSSR, 128, pp. 880-881 Hadamard, J., Sur l'iteration et les solutions asymptotiques des équations differentielles (1901) Bull. Soc. Math. Fr., 29, pp. 224-228 Hartman, P., A lemma in the theory of structural stability of differential equations (1960) Proc. Am. Math. Soc., 11, pp. 610-620 Henry, D., Geometric theory of semilinear parabolic equations (1993) In: Lecture Notes in Mathematics, 840. , Springer-Verlag, Berlin (1981, third printing) Lorenzi, L., Lunardi, A., Metafune, G., Pallara, D., (2005) Analytic semigroups and reaction-diffusion problems, , http://www.math.unipr.it/~lunardi/LectureNotes/I-Sem2005.pdf, Internet sem 2004-2005. Accessed 10 Oct 2011 Palis, J., (1967) On Morse-Smale Diffeomorphisms, , http://www.math.sunysb.edu/~joa/PUBLICATIONS/, Ph. D. thesis, UC Berkeley Palis, J., On Morse-Smale dynamical systems (1968) Topology, 8, pp. 385-404 Palis Jr., J., de Melo, W., (1982) Geometric Theory of Dynamical Systems, , New York: Springer-Verlag Perron, O., Über die Stabilität und asymptotisches Verhalten der Integrale von Differential gleichungssystemen (1928) Math. Z., 29, pp. 129-160 Reed, M., Simon, B., (1980) Functional Analysis, , Methods of modern mathematical physics I, London: Academic Press Salamon, D.A., Morse theory, the Conley index and Floer homology (1990) Bull. LMS, 22, pp. 113-140 Salamon, D.A., Weber, J., Floer homology and the heat flow (2006) Gafa, 16, pp. 1050-1138 Weber, J., (2012) The heat flow and the homology of the loop space, , http://www.math.sunysb.edu/~joa/PUBLICATIONS/2010%20habilitation.pdf, HU, Berlin (2010). Accessed 19 Apr Weber, J., Morse homology for the heat flow (2013) Math. Z., 275 (1), pp. 1-54 Weber, J., The backward λ-lemma and Morse filtrations (2013) In: Proceedings Nonlinear Differential Equations, pp. 1-9. , http://arxiv.org/abs/1211, 17-21 September 2012, João Pessoa, Brazil, 2180 (2012) (to appear in PNLDE). Accessed 16 Mar Weber, J., (2014) Stable foliations and the homology of the loop space, , (in preparation) Weber, J., (2014) The Heat Flow and the Homology of the Loop Space, , (in preparation)