dc.creatorWeber J.
dc.date2014
dc.date2015-06-25T17:57:11Z
dc.date2015-11-26T14:50:52Z
dc.date2015-06-25T17:57:11Z
dc.date2015-11-26T14:50:52Z
dc.date.accessioned2018-03-28T22:02:14Z
dc.date.available2018-03-28T22:02:14Z
dc.identifier
dc.identifierMathematische Annalen. Springer New York Llc, v. 359, n. 03/04/15, p. 929 - 967, 2014.
dc.identifier255831
dc.identifier10.1007/s00208-014-1026-6
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84904416139&partnerID=40&md5=058cb1d28f052f7e71ba962098dad89b
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87207
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87207
dc.identifier2-s2.0-84904416139
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254294
dc.descriptionThe inclination or λ-lemma is a fundamental tool in finite dimensional hyperbolic dynamics. In contrast to finite dimension, we consider the forward semi-flow on the loop space of a closed Riemannian manifold M provided by the heat flow. The main result is a backward λ-lemma for the heat flow near a hyperbolic fixed point x. There are the following novelties. Firstly, infinite versus finite dimension. Secondly, semi-flow versus flow. Thirdly, suitable adaption provides a new proof in the finite dimensional case. Fourthly and a priori most surprisingly, our λ-lemma moves the given disk transversal to the unstable manifold backward in time, although there is no backward flow. As a first application we propose a new method to calculate the Conley homotopy index of x. © 2014 Springer-Verlag Berlin Heidelberg.
dc.description359
dc.description03/04/15
dc.description929
dc.description967
dc.descriptionAbbondandolo, A., Majer, P., Lectures on the Morse complex for infinite dimensional manifolds, in Morse theoretic methods in nonlinear analysis and in symplectic topology (2006) NATO Science Series II: Mathematics, Physics and Chemistry, pp. 1-74. , In: Biran, P., Cornea, O., Lalonde, F. (eds.) Springer, New York
dc.descriptionChow, S.-N., Hale, J.K., Methods of bifurcation theory (1996) Grundlehren Math. Wissensch., 251. , (Springer, 1982, corrected second printing)
dc.descriptionChow, S.-N., Lin, X.-B., Lu, K., Smooth invariant foliations in infinite dimensional spaces (1991) J. Differ. Equ., 94, pp. 266-291
dc.descriptionConley, C.C., Isolated invariant sets and the Morse index (1978) In: CBMS Regional Conference Series in Mathematics, 38. , American Mathematical Society, Providence
dc.descriptionGrobman, D., Homeomorphisms of systems of differential equations (1959) Dokl. Akad. Nauk. SSSR, 128, pp. 880-881
dc.descriptionHadamard, J., Sur l'iteration et les solutions asymptotiques des équations differentielles (1901) Bull. Soc. Math. Fr., 29, pp. 224-228
dc.descriptionHartman, P., A lemma in the theory of structural stability of differential equations (1960) Proc. Am. Math. Soc., 11, pp. 610-620
dc.descriptionHenry, D., Geometric theory of semilinear parabolic equations (1993) In: Lecture Notes in Mathematics, 840. , Springer-Verlag, Berlin (1981, third printing)
dc.descriptionLorenzi, L., Lunardi, A., Metafune, G., Pallara, D., (2005) Analytic semigroups and reaction-diffusion problems, , http://www.math.unipr.it/~lunardi/LectureNotes/I-Sem2005.pdf, Internet sem 2004-2005. Accessed 10 Oct 2011
dc.descriptionPalis, J., (1967) On Morse-Smale Diffeomorphisms, , http://www.math.sunysb.edu/~joa/PUBLICATIONS/, Ph. D. thesis, UC Berkeley
dc.descriptionPalis, J., On Morse-Smale dynamical systems (1968) Topology, 8, pp. 385-404
dc.descriptionPalis Jr., J., de Melo, W., (1982) Geometric Theory of Dynamical Systems, , New York: Springer-Verlag
dc.descriptionPerron, O., Über die Stabilität und asymptotisches Verhalten der Integrale von Differential gleichungssystemen (1928) Math. Z., 29, pp. 129-160
dc.descriptionReed, M., Simon, B., (1980) Functional Analysis, , Methods of modern mathematical physics I, London: Academic Press
dc.descriptionSalamon, D.A., Morse theory, the Conley index and Floer homology (1990) Bull. LMS, 22, pp. 113-140
dc.descriptionSalamon, D.A., Weber, J., Floer homology and the heat flow (2006) Gafa, 16, pp. 1050-1138
dc.descriptionWeber, J., (2012) The heat flow and the homology of the loop space, , http://www.math.sunysb.edu/~joa/PUBLICATIONS/2010%20habilitation.pdf, HU, Berlin (2010). Accessed 19 Apr
dc.descriptionWeber, J., Morse homology for the heat flow (2013) Math. Z., 275 (1), pp. 1-54
dc.descriptionWeber, J., The backward λ-lemma and Morse filtrations (2013) In: Proceedings Nonlinear Differential Equations, pp. 1-9. , http://arxiv.org/abs/1211, 17-21 September 2012, João Pessoa, Brazil, 2180 (2012) (to appear in PNLDE). Accessed 16 Mar
dc.descriptionWeber, J., (2014) Stable foliations and the homology of the loop space, , (in preparation)
dc.descriptionWeber, J., (2014) The Heat Flow and the Homology of the Loop Space, , (in preparation)
dc.languageen
dc.publisherSpringer New York LLC
dc.relationMathematische Annalen
dc.rightsfechado
dc.sourceScopus
dc.titleA Backward λ-lemma For The Forward Heat Flow
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución