Artículos de revistas
Could Petroleum Biodegradation Be A Joint Achievement Of Aerobic And Anaerobic Microrganisms In Deep Sea Reservoirs?
Registro en:
Amb Express. , v. 1, n. 1, p. 1 - 10, 2011.
21910855
10.1186/2191-0855-1-47
2-s2.0-84877015108
Autor
da Cruz G.F.
de Vasconcellos S.P.
Angolini C.F.F.
Dellagnezze B.M.
Garcia I.N.S.
de Oliveira V.M.
dos Santos Neto E.V.
Marsaioli A.J.
Institución
Resumen
Several studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. © 2011 da Cruz et al; licensee Springer. 1 1 1 10 Balk, M., Life in the absence of oxygen: Alternative electron acceptors for anaerobic microorganisms in a petroleum environment (2007) Turk J Biol, 31, pp. 59-66 Bieszkiewicz, E., Horoch, M., Boszczyk-Maleszak, H., Mycielski, R., An attempt to use selected strains of bacteria adapted to high concentrations of petroleum oil to increase the effective removal of petroleum products in excess activated sludge in laboratory conditions (1998) Acta Microbiol Pol, 47, pp. 305-312 Borzenkov, I.A., Milekhina, E.T., Gotoeva, M.T., Rozanova, E.P., Beliaev, S.S., The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, Western Siberia, and Vietnam (2006) Mikrobiologia, 75, pp. 82-89 Bost, F.D., Frontera-Suau, R., McDonald, T.J., Peters, K.E., Morris, P.J., Aerobic biodegradation of hopanes and norhopanes in Venezuelan crude oils (2001) Org Geochem, 32, pp. 105-114. , doi:10.1016/S0146-6380(00)00147-9 Chaillan, F., Flèche, A., Bury, E., Phantavong, Y., Grimont, P., Saliot, A., Oudot, J., Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms (2004) Res Microbiol, 155, pp. 587-595. , doi:10.1016/j.resmic.2004.04.006 Clements, L.D., Streips, U.N., Miller, B.S., Differential proteomic analysis of Bacillus subtilis nitrate respiration and fermentation in defined medium (2002) Proteomics, 2, pp. 1724-1734. , doi:10.1002/1615-9861(200212)2:123.0.GD;2-S Coates, J.D., Ubiquity and diversity of disimilatory (per)chlorate-reducing bacteria (1999) Appl Environ Microbiol, 65, pp. 5234-5241 Connan, J., Biodegradation of crude oils in reservoirs (1984) Advances in Petroleum Geochemistry, pp. 299-330. , In: Brooks J, Welte DH, Academic Press, London Cord-Ruwich, R., Kleinitz, W., Widdel, F., Sulphate-reducing bacteria and their activities in oil production (1987) J Petrol Technol, 39, pp. 97-106 Cunha, C.D., Rosado, A.S., Sebastián, G.V., Seldin, L., Weid, I., Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil (2006) Appl Microbiol Biotechnol, 73, pp. 949-959. , doi:10.1007/s00253-006-0531-2 da Cruz, G.F., Santos Neto, E.V., Marsaioli, A.J., Petroleum degradation by aerobic microbiota from the Pampo Sul Oil Field, Campos Basin, Brazil (2008) Org Geochem, 39, pp. 1204-1209. , doi:10.1016/j.orggeochem.2008.04.010 da Cruz, G.F., Angolini, C.F.F., Santos Neto, E.V., Loh, W., Marsaioli, A.J., Exopolymeric Substances (EPS) Produced by Petroleum Microbial Consortia (2010) J Braz Chem Soc, 21 (8), pp. 1517-1523. , doi:10.1590/S0103-50532010000800016 Derek, R.L., Coates, J.D., Novel forms of anaerobic respiration of environmental relevance (2000) Curr Opin Microbiol, 3, pp. 252-256. , doi:10.1016/S1369-5274(00)00085-0 Ewing, B., Hillier, L., Wendl, M., Green, P., Base-calling of automated sequencer traces using phred (1998) I Accuracy Assessment Genome Res, 8, pp. 175-185 Godon, J.J., Zumstein, E., Dabert, P., Habouzit, F., Moletta, R., Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis (1997) Appl Environ Microbiol, 63, pp. 2802-2813 Good, I.J., The population frequencies of species and the estimation of population parameters (1953) Biometrika, 40, pp. 237-264 Goodwin, N.S., Park, P.J.D., Rawlinson, T., Crude oil biodegradation (1983) Advances in Organic Geochemistry, 1981, pp. 650-658. , In: Bjoroy M, Albrecht C, Cornford C, et al, John Wiley & Sons, New York Gotelli, N.J., Entsminger, G.L., EcoSim: Null models software for ecology (2003) Acquired Intelligence Inc, , & Kesey-Bear, Burlington VT 05465 Großkopf, R., Stubner, S., Liesack, W., Novel Euryarchaeota lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms (1998) Appl Environ Microbiol, 64, pp. 960-969 Guardado, L.R., Spadini, A.R., Brandäo, J.S.L., Mello, M.R., Petroleum system of the Campos Basin, Brazil (2000) Petroleum Systems of South Atlantic Margins. American Asssociation of Petroleum Geologists, Memoir, 73 (22), pp. 317-324. , In: Mello MR, Katz BJ Head, I.M., Jones, D.M., Larter, S.R., Biological activity in the deep subsurface and the origin of heavy oil (2003) Nature, 426, pp. 344-352. , doi:10.1038/nature02134 Heuer, V.B., Krüger, M., Elvert, M., Hinrichs, K., Experimental studies on the stable carbon isotope biogeochemistry of acetate in lake sediments (2010) Org Geochem, 41 (1), pp. 22-30. , doi:10.1016/j.orggeochem.2009.07.004 Jahnert, R., Franca, A., Trindade, L.A.F., Quintaes, C., Santos, P., Pessoa, J., Bedregal, R.P., The petroleum system of Campos Basin (1998) BGP AAPG International Conference & Exhibition, 600-601. , November 8-11, Rio de Janeiro, Brasil. Extended abstracts volume Jones, D.M., Head, I.M., Gray, N.D., Adams, J.J., Rowan, A.K., Aitken, C.M., Bennett, B., Larter, S.R., Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs (2008) Nat Lett, 451, pp. 176-181. , doi:10.1038/nature06484 Kimura, M., A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences (1980) J Mol Evol, 16, pp. 111-120. , doi:10.1007/BF01731581 Lane, D.J., 16S/23S RRNA Sequencing (1991) Nucleic Acid Techniques in Bacterial Systematics, pp. 115-147. , Goodfellow M, Stackebrandt E (eds). John Wiley and Sons, Chichester Magot, M., Ollivier, B., Patel, B.K.C., Microbiology of petroleum reservoirs (2000) Antonie Van Leeuwenhoek, 77, pp. 103-116. , doi:10.1023/A:1002434330514 Mello, M.R., Gaglianone, P.C., Brassell, S.C., Maxwell, J.R., Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils (1988) Marine Petrol Geol, 5, pp. 205-223. , doi:10.1016/0264-8172(88)90002-5 Mohriak, W.U., Mello, M.R., Karner, G.D., Dewey, J.F., Maxwell, J.R., Structural and stratigraphic evolution of the Campos Basin, Offshore Brazil (1989) Extentional Tectonics and Stratigraphy of North Atlantic Margins, American Asssociation of Petroleum Geologists, Memoir, 46 (38), pp. 577-598 Moldowan, J.M., McCaffrey, M.A., A novel microbial hydrocarbon degradation pathway revealed by hopane demethylation in a petroleum reservoir (1995) Geochim Cosmochim Acta, 59, pp. 1891-1894. , doi:10.1016/0016-7037(95)00072-8 Munoz, D., Guiliano, M., Doumenq, P., Jacquot, F., Scherrer, P., Mille, G., Long term evolution of petroleum biomarkers in mangrove soil (1997) Marine Pollut Bull, 34, pp. 868-874. , doi:10.1016/S0025-326X(97)00061-1 Neria-Gonzales, I., Wang, E.T., Ramirez, F., Romero, J.M., Hernandez-Rodriguez, C., Characterization of bacterial community associated to biofilms of corroded oil pipelines from southeast of Mexico (2006) Anaerobe, 12, pp. 122-133. , doi:10.1016/j.anaerobe.2006.02.001 Nestler, H., Kiesel, B., Kaschabek, S.R., Mau, M., Schlöman, M., Balcke, G.U., Biodegradation of chlorobenzene under hypoxic and mixed hypoxic-denitrifying conditions (2007) Biodegradation, 18, pp. 755-767. , doi:10.1007/s10532-007-9104-z Obermajer, M., Fowler, M.G., Snowdon, L.R., Macqueen, R.W., Compositional variability of crude oils and source kerogen in the Silurian carbonate-evaporite sequences of the eastern Michigan Basin, Ontario, Canada (2000) Bull Can Petrol Geol, 48, pp. 307-322. , doi:10.2113/48.4.307 Orphan, V.J., Taylor, L.T., Hafenbradl, D., Delong, E.F., Culture-dependent and culture-independent characterization of microbial assemblage associated with high temperature petroleum reservoirs (2000) Appl Environ Microbiol, 66, pp. 700-711. , doi:10.1128/AEM.66.2.700-711.2000 Palmer, S.E., (1993) Effects of Biodegradtion and Water Washing on Crude Oil Composition, pp. 511-533. , Organic Geochemistry Plenum Press, New York Peters, K.E., Moldowan, J.M., Effects of source, thermal maturity, and biodegradation on the distribuition and isomerization of homohopanes in petroleum (1991) Org Geochem, 17, pp. 47-61. , doi:10.1016/0146-6380(91)90039-M Peters, K.E., Moldowan, J.M., (1993) The Biomarker Guide. Interpreting Molecular Fossils In Petroleum and Ancient Sediments, , Prentice-Hall, Englewood Cliffs, NJ Petterson, B., Lembke, F., Hammer, P., Stackebrandt, E., Priest, F.G., Bacillus sporothermodurans, new species producing highly resistant endospores (1996) Inter J System Bacteriol, 46, pp. 759-764. , doi:10.1099/00207713-46-3-759 Pineda-Flores, G., Boll-Arguello, G., Lira-Galeana, C., Mesta-Howard, A.M., A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source (2004) Biodegradation, 15, pp. 145-151 Rahman, K.S.M., Thahira-Rahman, J., Lakshmanaperumalsamy, P., Banat, I.M., Towards efficient crude oil degradation by a mixed bacterial consortium (2002) Biores Technol, 85, pp. 257-261. , doi:10.1016/S0960-8524(02)00119-0 Rangel, H.D., Martins, F.A.L., Esteves, F.R., Feijó, F.J., (1994) Bacia De Campos. Bol Geocienc Petrobrás, 8, pp. 203-217 Roling, W.F.M., Head, I.M., Larter, S.R., The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: Perspectives and prospects (2003) Res Microbiol, 154, pp. 321-328. , doi:10.1016/S0923-2508(03)00086-X Saitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees (1987) Mol Biol Evol, 4, pp. 406-425 Sebastián, G.V., (1999) Avaliação Da População Bacteriana Presente Em Um Reservatório De Petróleo Situado Em Águas Profundas Brasileiras, , com ênfase no isolamento e caracterização de estirpes de Bacillus. Msc Thesis. Universidade Federal do Rio de Janeiro (RJ), Brazil Sette, L.D., Simioni, K.C.M., Vasconcellos, S.P., Dussan, L.J., Neto, E.V., Oliveira, V.M., Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin (2007) Antoine Van Leewenhoek, 91, pp. 253-266. , doi:10.1007/s10482-006-9115-5 Shen, C.F., Guiot, S.R., Long-term impact of dissolved O2 on the activity of anaerobic granules (1996) Biotechnol Bioeng, 49, pp. 611-620. , doi:10.1002/(SICI)1097-0290(19960320)49:63.3.C0;2-Z Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular evolutionary genetics analysis (MEGA) software, version 4.0 (2007) Mol Biol Evol, 24, pp. 1596-1599. , doi:10.1093/molbev/msm092 Taylor, P., Bennett, B., Jones, M., Larter, S., The effect of biodegradation and water washing on the occurrence of alkylphenols in crude oils (2001) Org Geochem, 32, pp. 341-358. , doi:10.1016/S0146-6380(00)00176-5 Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res, 24, pp. 4876-4882 Voordouw, G., Armstrong, S.M., Reimer, M.F., Fouts, B., Telang, A.J., Shen, Y., Gevertz, D., Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria (1996) Appl Environ Microbiol, 62, pp. 1623-1629 Wilkes, H., Boreham, C., Harms, G., Zengler, K., Rabus, R., Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria (2000) Org Geochem, 31, pp. 101-115. , doi:10.1016/S0146-6380(99) 00147-3 Xu, J., Trimble, J.J., Steinberg, L., Logan, B.E., Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA (2004) Water Res, 38, pp. 673-680. , doi:10.1016/j.watres.2003.10.017 Zengler, K., Richnow, H.H., Rosello-Mora, R., Michaelis, W., Widdel, F., Methane formation from long-chain alkanes by anaerobic microorganisms (1999) Nature, 401, pp. 266-269. , doi:10.1038/45777 Zeyer, J., Kuhn, E.P., Schawarzenbach, P.R., Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen (1986) Appl Environ Micorbiol, pp. 944-947 Zinder, S.H., Cardwell, S.C., Anguish, T., Lee, M., Koch, M., Methanogenesis in a thermophilic anaerobic digester: Methanotrix sp. as an important aceticlastic methanogen (1984) Appl Environ Microbiol, 47, pp. 796-807