dc.creatorda Cruz G.F.
dc.creatorde Vasconcellos S.P.
dc.creatorAngolini C.F.F.
dc.creatorDellagnezze B.M.
dc.creatorGarcia I.N.S.
dc.creatorde Oliveira V.M.
dc.creatordos Santos Neto E.V.
dc.creatorMarsaioli A.J.
dc.date2011
dc.date2015-06-30T20:24:42Z
dc.date2015-11-26T14:49:08Z
dc.date2015-06-30T20:24:42Z
dc.date2015-11-26T14:49:08Z
dc.date.accessioned2018-03-28T22:00:03Z
dc.date.available2018-03-28T22:00:03Z
dc.identifier
dc.identifierAmb Express. , v. 1, n. 1, p. 1 - 10, 2011.
dc.identifier21910855
dc.identifier10.1186/2191-0855-1-47
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84877015108&partnerID=40&md5=e567b07c80e1da49ca728ed724ea2092
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107840
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107840
dc.identifier2-s2.0-84877015108
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253806
dc.descriptionSeveral studies suggest that petroleum biodegradation can be achieved by either aerobic or anaerobic microorganisms, depending on oxygen input or other electron acceptors and appropriate nutrients. Evidence from in vitro experiments with samples of petroleum formation water and oils from Pampo Field indicate that petroleum biodegradation is more likely to be a joint achievement of both aerobic and anaerobic bacterial consortium, refining our previous observations of aerobic degradation. The aerobic consortium depleted, in decreasing order, hydrocarbons > hopanes > steranes > tricyclic terpanes while the anaerobic consortium depleted hydrocarbons > steranes > hopanes > tricyclic terpanes. The oxygen content of the mixed consortia was measured from time to time revealing alternating periods of microaerobicity (O2 ~0.8 mg.L-1) and of aerobicity (O2~6.0 mg.L-1). In this experiment, the petroleum biodegradation changed from time to time, alternating periods of biodegradation similar to the aerobic process and periods of biodegradation similar to the anaerobic process. The consortia showed preferences for metabolizing hydrocarbons > hopanes > steranes > tricyclic terpanes during a 90-day period, after which this trend changed and steranes were more biodegraded than hopanes. The analysis of aerobic oil degrading microbiota by the 16S rRNA gene clone library detected the presence of Bacillus, Brevibacterium, Mesorhizobium and Achromobacter, and the analysis of the anaerobic oil degrading microbiota using the same technique detected the presence of Bacillus and Acinetobacter (facultative strains). In the mixed consortia Stenotrophomonas, Brevibacterium, Bacillus, Rhizobium, Achromobacter and 5% uncultured bacteria were detected. This is certainly a new contribution to the study of reservoir biodegradation processes, combining two of the more important accepted hypotheses. © 2011 da Cruz et al; licensee Springer.
dc.description1
dc.description1
dc.description1
dc.description10
dc.descriptionBalk, M., Life in the absence of oxygen: Alternative electron acceptors for anaerobic microorganisms in a petroleum environment (2007) Turk J Biol, 31, pp. 59-66
dc.descriptionBieszkiewicz, E., Horoch, M., Boszczyk-Maleszak, H., Mycielski, R., An attempt to use selected strains of bacteria adapted to high concentrations of petroleum oil to increase the effective removal of petroleum products in excess activated sludge in laboratory conditions (1998) Acta Microbiol Pol, 47, pp. 305-312
dc.descriptionBorzenkov, I.A., Milekhina, E.T., Gotoeva, M.T., Rozanova, E.P., Beliaev, S.S., The properties of hydrocarbon-oxidizing bacteria isolated from the oilfields of Tatarstan, Western Siberia, and Vietnam (2006) Mikrobiologia, 75, pp. 82-89
dc.descriptionBost, F.D., Frontera-Suau, R., McDonald, T.J., Peters, K.E., Morris, P.J., Aerobic biodegradation of hopanes and norhopanes in Venezuelan crude oils (2001) Org Geochem, 32, pp. 105-114. , doi:10.1016/S0146-6380(00)00147-9
dc.descriptionChaillan, F., Flèche, A., Bury, E., Phantavong, Y., Grimont, P., Saliot, A., Oudot, J., Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms (2004) Res Microbiol, 155, pp. 587-595. , doi:10.1016/j.resmic.2004.04.006
dc.descriptionClements, L.D., Streips, U.N., Miller, B.S., Differential proteomic analysis of Bacillus subtilis nitrate respiration and fermentation in defined medium (2002) Proteomics, 2, pp. 1724-1734. , doi:10.1002/1615-9861(200212)2:123.0.GD;2-S
dc.descriptionCoates, J.D., Ubiquity and diversity of disimilatory (per)chlorate-reducing bacteria (1999) Appl Environ Microbiol, 65, pp. 5234-5241
dc.descriptionConnan, J., Biodegradation of crude oils in reservoirs (1984) Advances in Petroleum Geochemistry, pp. 299-330. , In: Brooks J, Welte DH, Academic Press, London
dc.descriptionCord-Ruwich, R., Kleinitz, W., Widdel, F., Sulphate-reducing bacteria and their activities in oil production (1987) J Petrol Technol, 39, pp. 97-106
dc.descriptionCunha, C.D., Rosado, A.S., Sebastián, G.V., Seldin, L., Weid, I., Oil biodegradation by Bacillus strains isolated from the rock of an oil reservoir located in a deep-water production basin in Brazil (2006) Appl Microbiol Biotechnol, 73, pp. 949-959. , doi:10.1007/s00253-006-0531-2
dc.descriptionda Cruz, G.F., Santos Neto, E.V., Marsaioli, A.J., Petroleum degradation by aerobic microbiota from the Pampo Sul Oil Field, Campos Basin, Brazil (2008) Org Geochem, 39, pp. 1204-1209. , doi:10.1016/j.orggeochem.2008.04.010
dc.descriptionda Cruz, G.F., Angolini, C.F.F., Santos Neto, E.V., Loh, W., Marsaioli, A.J., Exopolymeric Substances (EPS) Produced by Petroleum Microbial Consortia (2010) J Braz Chem Soc, 21 (8), pp. 1517-1523. , doi:10.1590/S0103-50532010000800016
dc.descriptionDerek, R.L., Coates, J.D., Novel forms of anaerobic respiration of environmental relevance (2000) Curr Opin Microbiol, 3, pp. 252-256. , doi:10.1016/S1369-5274(00)00085-0
dc.descriptionEwing, B., Hillier, L., Wendl, M., Green, P., Base-calling of automated sequencer traces using phred (1998) I Accuracy Assessment Genome Res, 8, pp. 175-185
dc.descriptionGodon, J.J., Zumstein, E., Dabert, P., Habouzit, F., Moletta, R., Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis (1997) Appl Environ Microbiol, 63, pp. 2802-2813
dc.descriptionGood, I.J., The population frequencies of species and the estimation of population parameters (1953) Biometrika, 40, pp. 237-264
dc.descriptionGoodwin, N.S., Park, P.J.D., Rawlinson, T., Crude oil biodegradation (1983) Advances in Organic Geochemistry, 1981, pp. 650-658. , In: Bjoroy M, Albrecht C, Cornford C, et al, John Wiley & Sons, New York
dc.descriptionGotelli, N.J., Entsminger, G.L., EcoSim: Null models software for ecology (2003) Acquired Intelligence Inc, , & Kesey-Bear, Burlington VT 05465
dc.descriptionGroßkopf, R., Stubner, S., Liesack, W., Novel Euryarchaeota lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms (1998) Appl Environ Microbiol, 64, pp. 960-969
dc.descriptionGuardado, L.R., Spadini, A.R., Brandäo, J.S.L., Mello, M.R., Petroleum system of the Campos Basin, Brazil (2000) Petroleum Systems of South Atlantic Margins. American Asssociation of Petroleum Geologists, Memoir, 73 (22), pp. 317-324. , In: Mello MR, Katz BJ
dc.descriptionHead, I.M., Jones, D.M., Larter, S.R., Biological activity in the deep subsurface and the origin of heavy oil (2003) Nature, 426, pp. 344-352. , doi:10.1038/nature02134
dc.descriptionHeuer, V.B., Krüger, M., Elvert, M., Hinrichs, K., Experimental studies on the stable carbon isotope biogeochemistry of acetate in lake sediments (2010) Org Geochem, 41 (1), pp. 22-30. , doi:10.1016/j.orggeochem.2009.07.004
dc.descriptionJahnert, R., Franca, A., Trindade, L.A.F., Quintaes, C., Santos, P., Pessoa, J., Bedregal, R.P., The petroleum system of Campos Basin (1998) BGP
dc.descriptionAAPG International Conference & Exhibition, 600-601. , November 8-11, Rio de Janeiro, Brasil. Extended abstracts volume
dc.descriptionJones, D.M., Head, I.M., Gray, N.D., Adams, J.J., Rowan, A.K., Aitken, C.M., Bennett, B., Larter, S.R., Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs (2008) Nat Lett, 451, pp. 176-181. , doi:10.1038/nature06484
dc.descriptionKimura, M., A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences (1980) J Mol Evol, 16, pp. 111-120. , doi:10.1007/BF01731581
dc.descriptionLane, D.J., 16S/23S RRNA Sequencing (1991) Nucleic Acid Techniques in Bacterial Systematics, pp. 115-147. , Goodfellow M, Stackebrandt E (eds). John Wiley and Sons, Chichester
dc.descriptionMagot, M., Ollivier, B., Patel, B.K.C., Microbiology of petroleum reservoirs (2000) Antonie Van Leeuwenhoek, 77, pp. 103-116. , doi:10.1023/A:1002434330514
dc.descriptionMello, M.R., Gaglianone, P.C., Brassell, S.C., Maxwell, J.R., Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils (1988) Marine Petrol Geol, 5, pp. 205-223. , doi:10.1016/0264-8172(88)90002-5
dc.descriptionMohriak, W.U., Mello, M.R., Karner, G.D., Dewey, J.F., Maxwell, J.R., Structural and stratigraphic evolution of the Campos Basin, Offshore Brazil (1989) Extentional Tectonics and Stratigraphy of North Atlantic Margins, American Asssociation of Petroleum Geologists, Memoir, 46 (38), pp. 577-598
dc.descriptionMoldowan, J.M., McCaffrey, M.A., A novel microbial hydrocarbon degradation pathway revealed by hopane demethylation in a petroleum reservoir (1995) Geochim Cosmochim Acta, 59, pp. 1891-1894. , doi:10.1016/0016-7037(95)00072-8
dc.descriptionMunoz, D., Guiliano, M., Doumenq, P., Jacquot, F., Scherrer, P., Mille, G., Long term evolution of petroleum biomarkers in mangrove soil (1997) Marine Pollut Bull, 34, pp. 868-874. , doi:10.1016/S0025-326X(97)00061-1
dc.descriptionNeria-Gonzales, I., Wang, E.T., Ramirez, F., Romero, J.M., Hernandez-Rodriguez, C., Characterization of bacterial community associated to biofilms of corroded oil pipelines from southeast of Mexico (2006) Anaerobe, 12, pp. 122-133. , doi:10.1016/j.anaerobe.2006.02.001
dc.descriptionNestler, H., Kiesel, B., Kaschabek, S.R., Mau, M., Schlöman, M., Balcke, G.U., Biodegradation of chlorobenzene under hypoxic and mixed hypoxic-denitrifying conditions (2007) Biodegradation, 18, pp. 755-767. , doi:10.1007/s10532-007-9104-z
dc.descriptionObermajer, M., Fowler, M.G., Snowdon, L.R., Macqueen, R.W., Compositional variability of crude oils and source kerogen in the Silurian carbonate-evaporite sequences of the eastern Michigan Basin, Ontario, Canada (2000) Bull Can Petrol Geol, 48, pp. 307-322. , doi:10.2113/48.4.307
dc.descriptionOrphan, V.J., Taylor, L.T., Hafenbradl, D., Delong, E.F., Culture-dependent and culture-independent characterization of microbial assemblage associated with high temperature petroleum reservoirs (2000) Appl Environ Microbiol, 66, pp. 700-711. , doi:10.1128/AEM.66.2.700-711.2000
dc.descriptionPalmer, S.E., (1993) Effects of Biodegradtion and Water Washing on Crude Oil Composition, pp. 511-533. , Organic Geochemistry Plenum Press, New York
dc.descriptionPeters, K.E., Moldowan, J.M., Effects of source, thermal maturity, and biodegradation on the distribuition and isomerization of homohopanes in petroleum (1991) Org Geochem, 17, pp. 47-61. , doi:10.1016/0146-6380(91)90039-M
dc.descriptionPeters, K.E., Moldowan, J.M., (1993) The Biomarker Guide. Interpreting Molecular Fossils In Petroleum and Ancient Sediments, , Prentice-Hall, Englewood Cliffs, NJ
dc.descriptionPetterson, B., Lembke, F., Hammer, P., Stackebrandt, E., Priest, F.G., Bacillus sporothermodurans, new species producing highly resistant endospores (1996) Inter J System Bacteriol, 46, pp. 759-764. , doi:10.1099/00207713-46-3-759
dc.descriptionPineda-Flores, G., Boll-Arguello, G., Lira-Galeana, C., Mesta-Howard, A.M., A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source (2004) Biodegradation, 15, pp. 145-151
dc.descriptionRahman, K.S.M., Thahira-Rahman, J., Lakshmanaperumalsamy, P., Banat, I.M., Towards efficient crude oil degradation by a mixed bacterial consortium (2002) Biores Technol, 85, pp. 257-261. , doi:10.1016/S0960-8524(02)00119-0
dc.descriptionRangel, H.D., Martins, F.A.L., Esteves, F.R., Feijó, F.J., (1994) Bacia De Campos. Bol Geocienc Petrobrás, 8, pp. 203-217
dc.descriptionRoling, W.F.M., Head, I.M., Larter, S.R., The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: Perspectives and prospects (2003) Res Microbiol, 154, pp. 321-328. , doi:10.1016/S0923-2508(03)00086-X
dc.descriptionSaitou, N., Nei, M., The neighbor-joining method: A new method for reconstructing phylogenetic trees (1987) Mol Biol Evol, 4, pp. 406-425
dc.descriptionSebastián, G.V., (1999) Avaliação Da População Bacteriana Presente Em Um Reservatório De Petróleo Situado Em Águas Profundas Brasileiras, , com ênfase no isolamento e caracterização de estirpes de Bacillus. Msc Thesis. Universidade Federal do Rio de Janeiro (RJ), Brazil
dc.descriptionSette, L.D., Simioni, K.C.M., Vasconcellos, S.P., Dussan, L.J., Neto, E.V., Oliveira, V.M., Analysis of the composition of bacterial communities in oil reservoirs from a southern offshore Brazilian basin (2007) Antoine Van Leewenhoek, 91, pp. 253-266. , doi:10.1007/s10482-006-9115-5
dc.descriptionShen, C.F., Guiot, S.R., Long-term impact of dissolved O2 on the activity of anaerobic granules (1996) Biotechnol Bioeng, 49, pp. 611-620. , doi:10.1002/(SICI)1097-0290(19960320)49:63.3.C0;2-Z
dc.descriptionTamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: Molecular evolutionary genetics analysis (MEGA) software, version 4.0 (2007) Mol Biol Evol, 24, pp. 1596-1599. , doi:10.1093/molbev/msm092
dc.descriptionTaylor, P., Bennett, B., Jones, M., Larter, S., The effect of biodegradation and water washing on the occurrence of alkylphenols in crude oils (2001) Org Geochem, 32, pp. 341-358. , doi:10.1016/S0146-6380(00)00176-5
dc.descriptionThompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res, 24, pp. 4876-4882
dc.descriptionVoordouw, G., Armstrong, S.M., Reimer, M.F., Fouts, B., Telang, A.J., Shen, Y., Gevertz, D., Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria (1996) Appl Environ Microbiol, 62, pp. 1623-1629
dc.descriptionWilkes, H., Boreham, C., Harms, G., Zengler, K., Rabus, R., Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulphate-reducing bacteria (2000) Org Geochem, 31, pp. 101-115. , doi:10.1016/S0146-6380(99) 00147-3
dc.descriptionXu, J., Trimble, J.J., Steinberg, L., Logan, B.E., Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA (2004) Water Res, 38, pp. 673-680. , doi:10.1016/j.watres.2003.10.017
dc.descriptionZengler, K., Richnow, H.H., Rosello-Mora, R., Michaelis, W., Widdel, F., Methane formation from long-chain alkanes by anaerobic microorganisms (1999) Nature, 401, pp. 266-269. , doi:10.1038/45777
dc.descriptionZeyer, J., Kuhn, E.P., Schawarzenbach, P.R., Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen (1986) Appl Environ Micorbiol, pp. 944-947
dc.descriptionZinder, S.H., Cardwell, S.C., Anguish, T., Lee, M., Koch, M., Methanogenesis in a thermophilic anaerobic digester: Methanotrix sp. as an important aceticlastic methanogen (1984) Appl Environ Microbiol, 47, pp. 796-807
dc.languageen
dc.publisher
dc.relationAMB Express
dc.rightsaberto
dc.sourceScopus
dc.titleCould Petroleum Biodegradation Be A Joint Achievement Of Aerobic And Anaerobic Microrganisms In Deep Sea Reservoirs?
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución