Artículos de revistas
Gas-phase Nucleophilic Reactions Of Ge(och3)4: Experimental And Computational Characterization Of Pentacoordinated Ge Anions
Registro en:
International Journal Of Mass Spectrometry. , v. 195-196, n. , p. 363 - 375, 2000.
13873806
10.1016/S1387-3806(99)00189-X
2-s2.0-0034695377
Autor
Morgon N.H.
Xavier L.A.
Riveros J.M.
Institución
Resumen
The gas-phase ion/molecule reactions of F- and CH3O- with Ge(OCH3)4 have been investigated by Fourier transform ion cyclotron mass spectrometry. Both nucleophiles react preferentially by an addition mechanism to yield XGe(OCH3)4/- (X = F, OCH3) complexes that are identified as typical pentacoordinated Ge species. Pentacoordinated Ge adducts formed with excess internal energy can undergo elimination of formaldehyde to yield HGe(OCH3)4/-, or further elimination processes that result in the formation of germyl anions like Ge(OCH3)3/-. Other minor product ions are also observed which can be attributed to the intermediacy of a pentacoordinated adduct. Dissociation of the XGe(OCH3)4/- anions induced by infrared multiphoton excitation leads to sequential losses of formaldehyde and gives rise to different germyl anions like Ge(OCH3)3/-, HGe(OCH3)2/-, and H2GeOCH3/-. The XGe(OCH3)4/- and germyl anions react readily with BF3 through successive methoxide-fluoride exchange and this reaction provides a gas-phase synthetic pathway for multiply fluorinated Ge anions. Ab initio calculations performed on model pentacoordinated species F(n+1)Ge(OH)(4-n)/- (n = 0-4) reveal that addition of a fluoride ion on hydroxygermanes occurs preferentially in the apical position of a trigonal bipyramid. The fluoride affinity of the prototype molecule Ge(OH)4 is calculated to be 60.9 kcal mol-1, and fluoride affinity increases monotonically with increasing fluorine substitution. The fluoride affinity of GeF4 is calculated to be 79 kcal mol-1. Similar calculations also predict an unusually high hydride affinity (60 kcal mol-1) for Ge(OH)4 with the hydride occupying an equatorial position. (C) 2000 Elsevier Science B.V. 195-196
363 375 Aronne, A., Catauro, M., Pernice, P., Marotta, A., (1993) Mater. Chem. Phys., 34, p. 86 Aronne, A., Catauro, M., Pernice, P., Marotta, A., (1994) Phys. Chem. Glasses, 35, p. 160 Kamiya, K., Tatsumi, M., Matsuoka, J., Nasu, H., (1998) Phys. Chem. Glasses, 39, p. 9 Stanic, V., Etsell, T.H., Pierce, A.C., Mikula, R.J., (1997) J. Mater. Chem., 7, p. 105 Hibino, T., Niwa, M., Murakami, Y., Sano, M., (1989) J. Chem. Soc., Faraday Trans. 1, 85, p. 2327 Pola, J., Fajgar, R., Bastl, Z., Diaz, L., (1992) J. Mater. Chem., 2, p. 961 Li, H., Eddaoudi, M., Richardson, D.A., Yaghi, O.M., (1998) J. Am. Chem. Soc., 120, p. 8567 Li, H., Yaghi, O.M., (1998) J. Am. Chem. Soc., 120, p. 10569 Cascales, C., Gutierrez-Puebla, E., Monge, M.A., Ruiz-Valero, C., (1998) Angew. Chem. Int. Ed. Engl., 37, p. 129 Bernards, T.N.M., Oomen, E.W.J.L., Vanbommel, M.J., Boonstra, A.H., (1992) J. Non-Cryst. Solids, 142, p. 215 Vanbommel, M.J., Bernards, T.N.M., Oomen, E.W.J.L., Boonstra, A.H., (1992) J. Non-Cryst. Solids, 147, p. 80 Xavier, L.A., Riveros, J.M., (1998) Int. J. Mass Spectrom. Ion Processes, 179-180, p. 223 Benzi, P., Operti, L., Vaglio, G.A., Volpe, P., Speranza, M., Gabrielli, R., (1988) J. Organomet. Chem., 354, p. 39 Benzi, P., Operti, L., Vaglio, G.A., Volpe, P., Speranza, M., Gabrielli, R., (1989) J. Organomet. Chem., 373, p. 289 Benzi, P., Operti, L., Vaglio, G.A., Volpe, P., Speranza, M., Gabrielli, R., (1990) Int. J. Mass Spectrom. Ion Processes, 100, p. 646 Operti, L., Splendore, M., Vaglio, G.A., Volpe, P., Speranza, M., Occhiucci, G., (1992) J. Organomet. Chem., 433, p. 35 Operti, L., Splendore, M., Vaglio, G.A., Volpe, P., (1993) Organometallics, 12, p. 4509 Operti, L., Splendore, M., Vaglio, G.A., Volpe, P., (1993) Organometallics, 12, p. 4516 Zaiteva, G.S., Livantsova, L.I., Nasim, M., Karlov, S.A., Churakov, A.V., Howard, J.A.K., Avtomonov, E.V., Lorberth, J., (1997) Chem. Ber., 130, p. 739 Kudin, K.K., Margrave, J.L., Khabashesku, V.N., (1998) J. Phys. Chem. A, 102, p. 744 Toltl, N.P., Leigh, W.J., (1998) J. Am. Chem. Soc., 120, p. 1172 Nowek, A., Sims, R., Babinec, P., Leszcynski, J., (1998) J. Phys. Chem. A, 102, p. 2189 Campostrini, R., Carturan, G., Pelli, B., Traldi, P., (1989) J. Non-Cryst. Solids, 108, p. 143 Sobott, F., Shunk, S.A., Schuth, F., Brutschy, B., (1998) Chem. Eur. J., 4, p. 2353 Da Silva, M.L.P., Riveros, J.M., (1995) J. Mass Spectrom., 30, p. 733 Goldberg, N., Schwarz, H., (1998), p. 1105. , The Chemistry of Organic Silicon Compounds, Vol. 2, S. Patai, Z. Rappoport (Eds.), Wiley, ChichesterDamrauer, R., Hankin, J.A., (1995) Chem. Rev., 95, p. 1137 DePuy, C.H., Damrauer, R., Bowie, J.H., Sheldon, J.C., (1987) Acc. Chem. Res., 20, p. 127 Morgon, N.H., Argenton, A.B., Da Silva, M.L.P., Riveros, J.M., (1997) J. Am. Chem. Soc., 119, p. 1708 Harland, P.W., Franklin, J.L., (1974) J. Chem. Phys., 61, p. 1621 Okada, Y., Kato, S., Satooka, S., Takeuchi, K., (1990) Spectrochim. Acta A, 46, p. 643 Damrauer, R., Burggraf, L.W., Davis, L.P., Gordon, M.S., (1988) J. Am. Chem. Soc., 110, p. 6601 Hajdasz, D.J., Ho, Y., Squires, R.R., (1994) J. Am. Chem. Soc., 116, p. 10751 Klass, G., Trenerry, V.C., Sheldon, J.C., Bowie, J.H., (1981) Aust. J. Chem., 34, p. 519 Sheldon, J.C., Hayes, R.N., Bowie, J.H., DePuy, C.H., (1987) J. Chem. Soc., Perkin Trans., 2, p. 275 Wel, H.V., Nibbering, N.M.M., Sheldon, J.C., Hayes, R.N., Bowie, J.H., (1987) J. Am. Chem. Soc., 109, p. 5823 Angelini, G., Johnson, C.E., Brauman, J.I., (1991) Int. J. Mass Spectrom. Ion Processes, 109, p. 1 Da Silva, M.L.P., Riveros, J.M., (1997) Int. J. Mass Spectrom. Ion Processes, 165-166, p. 83 Murphy, M.K., Beauchamp, J.L., (1977) Inorg. Chem., 16, p. 2437 Larson, J.W., McMahon, T.B., (1985) J. Am. Chem. Soc., 107, p. 766 Larson, J.W., McMahon, T.B., (1987) Inorg. Chem., 26, p. 4018 Gordon, M.S., Davis, L.P., Burgraff, L.W., (1992), p. 203. , Advances in Gas Phase Ion Chemistry, N.G. Adams, L.M. Babcock (Eds.), JAI, Greenwich, CTReed, A.E., Schleyer, P.V.R., (1990) J. Am. Chem. Soc., 112, p. 1434 Cioslowsky, J., Piskorz, P., Schimeczek, M., Boche, G., (1998) J. Am. Chem. Soc., 120, p. 2612 Damrauer, R., Krempp, M., Damrauer, N.H., Schmidt, M.W., Gordon, M.S., (1993) J. Am. Chem. Soc., 115, p. 5218 Morgon, N.H., Riveros, J.M., (1998) J. Phys. Chem. A, 102, p. 10399 Morgon, N.H., (1998) J. Phys. Chem. A, 102, p. 2050 Tanabe, F.K.J., Morgon, N.H., Riveros, J.M., (1996) J. Phys. Chem., 100, p. 2862 Morgon, N.H., Linnert, H.V., Riveros, J.M., (1995) J. Phys. Chem., 99, p. 11667 Morgon, N.H., Linnert, H.V., De Souza, L.A.G., Riveros, J.M., (1997) Chem. Phys. Lett., 275, p. 457 Frisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Pople, J.A., (1995), GAUSSIAN 94, Revision D.2, Gaussian, Inc., Pittsburgh, PACramer, C.J., Squires, R.R., (1995) J. Am. Chem. Soc., 117, p. 9285 Huheey, J.H., Keiter, E.A., Keiter, R.L., (1993), pp. A-30. , Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., HarperCollins, New YorkAnderson, W.E., Sheridan, J., Gordy, W., (1951) Phys. Rev., 81, p. 819 Mallouk, T.E., Desbat, B., Bartlett, N., (1984) Inorg. Chem., 23, p. 3160 Mallouk, T.E., Rosenthal, G.L., Muller, G., Brusasco, R., Bartlett, N., (1984) Inorg. Chem., 23, p. 3167 Harland, P.W., Cradock, S., Thynne, J.C., (1972) Int. J. Mass Spectrom. Ion Phys., 10, p. 169 Murphy, M.K., Beauchamp, J.L., (1977) J. Am. Chem. Soc., 99, p. 4992 Wenthold, P.G., Squires, R.R., (1995) J. Phys. Chem., 99, p. 2002