dc.creatorMorgon N.H.
dc.creatorXavier L.A.
dc.creatorRiveros J.M.
dc.date2000
dc.date2015-06-30T19:50:40Z
dc.date2015-11-26T14:47:10Z
dc.date2015-06-30T19:50:40Z
dc.date2015-11-26T14:47:10Z
dc.date.accessioned2018-03-28T21:57:23Z
dc.date.available2018-03-28T21:57:23Z
dc.identifier
dc.identifierInternational Journal Of Mass Spectrometry. , v. 195-196, n. , p. 363 - 375, 2000.
dc.identifier13873806
dc.identifier10.1016/S1387-3806(99)00189-X
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0034695377&partnerID=40&md5=40550dbe828fcc1f4ed39e8089f78f06
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/107240
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/107240
dc.identifier2-s2.0-0034695377
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1253157
dc.descriptionThe gas-phase ion/molecule reactions of F- and CH3O- with Ge(OCH3)4 have been investigated by Fourier transform ion cyclotron mass spectrometry. Both nucleophiles react preferentially by an addition mechanism to yield XGe(OCH3)4/- (X = F, OCH3) complexes that are identified as typical pentacoordinated Ge species. Pentacoordinated Ge adducts formed with excess internal energy can undergo elimination of formaldehyde to yield HGe(OCH3)4/-, or further elimination processes that result in the formation of germyl anions like Ge(OCH3)3/-. Other minor product ions are also observed which can be attributed to the intermediacy of a pentacoordinated adduct. Dissociation of the XGe(OCH3)4/- anions induced by infrared multiphoton excitation leads to sequential losses of formaldehyde and gives rise to different germyl anions like Ge(OCH3)3/-, HGe(OCH3)2/-, and H2GeOCH3/-. The XGe(OCH3)4/- and germyl anions react readily with BF3 through successive methoxide-fluoride exchange and this reaction provides a gas-phase synthetic pathway for multiply fluorinated Ge anions. Ab initio calculations performed on model pentacoordinated species F(n+1)Ge(OH)(4-n)/- (n = 0-4) reveal that addition of a fluoride ion on hydroxygermanes occurs preferentially in the apical position of a trigonal bipyramid. The fluoride affinity of the prototype molecule Ge(OH)4 is calculated to be 60.9 kcal mol-1, and fluoride affinity increases monotonically with increasing fluorine substitution. The fluoride affinity of GeF4 is calculated to be 79 kcal mol-1. Similar calculations also predict an unusually high hydride affinity (60 kcal mol-1) for Ge(OH)4 with the hydride occupying an equatorial position. (C) 2000 Elsevier Science B.V.
dc.description195-196
dc.description
dc.description363
dc.description375
dc.descriptionAronne, A., Catauro, M., Pernice, P., Marotta, A., (1993) Mater. Chem. Phys., 34, p. 86
dc.descriptionAronne, A., Catauro, M., Pernice, P., Marotta, A., (1994) Phys. Chem. Glasses, 35, p. 160
dc.descriptionKamiya, K., Tatsumi, M., Matsuoka, J., Nasu, H., (1998) Phys. Chem. Glasses, 39, p. 9
dc.descriptionStanic, V., Etsell, T.H., Pierce, A.C., Mikula, R.J., (1997) J. Mater. Chem., 7, p. 105
dc.descriptionHibino, T., Niwa, M., Murakami, Y., Sano, M., (1989) J. Chem. Soc., Faraday Trans. 1, 85, p. 2327
dc.descriptionPola, J., Fajgar, R., Bastl, Z., Diaz, L., (1992) J. Mater. Chem., 2, p. 961
dc.descriptionLi, H., Eddaoudi, M., Richardson, D.A., Yaghi, O.M., (1998) J. Am. Chem. Soc., 120, p. 8567
dc.descriptionLi, H., Yaghi, O.M., (1998) J. Am. Chem. Soc., 120, p. 10569
dc.descriptionCascales, C., Gutierrez-Puebla, E., Monge, M.A., Ruiz-Valero, C., (1998) Angew. Chem. Int. Ed. Engl., 37, p. 129
dc.descriptionBernards, T.N.M., Oomen, E.W.J.L., Vanbommel, M.J., Boonstra, A.H., (1992) J. Non-Cryst. Solids, 142, p. 215
dc.descriptionVanbommel, M.J., Bernards, T.N.M., Oomen, E.W.J.L., Boonstra, A.H., (1992) J. Non-Cryst. Solids, 147, p. 80
dc.descriptionXavier, L.A., Riveros, J.M., (1998) Int. J. Mass Spectrom. Ion Processes, 179-180, p. 223
dc.descriptionBenzi, P., Operti, L., Vaglio, G.A., Volpe, P., Speranza, M., Gabrielli, R., (1988) J. Organomet. Chem., 354, p. 39
dc.descriptionBenzi, P., Operti, L., Vaglio, G.A., Volpe, P., Speranza, M., Gabrielli, R., (1989) J. Organomet. Chem., 373, p. 289
dc.descriptionBenzi, P., Operti, L., Vaglio, G.A., Volpe, P., Speranza, M., Gabrielli, R., (1990) Int. J. Mass Spectrom. Ion Processes, 100, p. 646
dc.descriptionOperti, L., Splendore, M., Vaglio, G.A., Volpe, P., Speranza, M., Occhiucci, G., (1992) J. Organomet. Chem., 433, p. 35
dc.descriptionOperti, L., Splendore, M., Vaglio, G.A., Volpe, P., (1993) Organometallics, 12, p. 4509
dc.descriptionOperti, L., Splendore, M., Vaglio, G.A., Volpe, P., (1993) Organometallics, 12, p. 4516
dc.descriptionZaiteva, G.S., Livantsova, L.I., Nasim, M., Karlov, S.A., Churakov, A.V., Howard, J.A.K., Avtomonov, E.V., Lorberth, J., (1997) Chem. Ber., 130, p. 739
dc.descriptionKudin, K.K., Margrave, J.L., Khabashesku, V.N., (1998) J. Phys. Chem. A, 102, p. 744
dc.descriptionToltl, N.P., Leigh, W.J., (1998) J. Am. Chem. Soc., 120, p. 1172
dc.descriptionNowek, A., Sims, R., Babinec, P., Leszcynski, J., (1998) J. Phys. Chem. A, 102, p. 2189
dc.descriptionCampostrini, R., Carturan, G., Pelli, B., Traldi, P., (1989) J. Non-Cryst. Solids, 108, p. 143
dc.descriptionSobott, F., Shunk, S.A., Schuth, F., Brutschy, B., (1998) Chem. Eur. J., 4, p. 2353
dc.descriptionDa Silva, M.L.P., Riveros, J.M., (1995) J. Mass Spectrom., 30, p. 733
dc.descriptionGoldberg, N., Schwarz, H., (1998), p. 1105. , The Chemistry of Organic Silicon Compounds, Vol. 2, S. Patai, Z. Rappoport (Eds.), Wiley, ChichesterDamrauer, R., Hankin, J.A., (1995) Chem. Rev., 95, p. 1137
dc.descriptionDePuy, C.H., Damrauer, R., Bowie, J.H., Sheldon, J.C., (1987) Acc. Chem. Res., 20, p. 127
dc.descriptionMorgon, N.H., Argenton, A.B., Da Silva, M.L.P., Riveros, J.M., (1997) J. Am. Chem. Soc., 119, p. 1708
dc.descriptionHarland, P.W., Franklin, J.L., (1974) J. Chem. Phys., 61, p. 1621
dc.descriptionOkada, Y., Kato, S., Satooka, S., Takeuchi, K., (1990) Spectrochim. Acta A, 46, p. 643
dc.descriptionDamrauer, R., Burggraf, L.W., Davis, L.P., Gordon, M.S., (1988) J. Am. Chem. Soc., 110, p. 6601
dc.descriptionHajdasz, D.J., Ho, Y., Squires, R.R., (1994) J. Am. Chem. Soc., 116, p. 10751
dc.descriptionKlass, G., Trenerry, V.C., Sheldon, J.C., Bowie, J.H., (1981) Aust. J. Chem., 34, p. 519
dc.descriptionSheldon, J.C., Hayes, R.N., Bowie, J.H., DePuy, C.H., (1987) J. Chem. Soc., Perkin Trans., 2, p. 275
dc.descriptionWel, H.V., Nibbering, N.M.M., Sheldon, J.C., Hayes, R.N., Bowie, J.H., (1987) J. Am. Chem. Soc., 109, p. 5823
dc.descriptionAngelini, G., Johnson, C.E., Brauman, J.I., (1991) Int. J. Mass Spectrom. Ion Processes, 109, p. 1
dc.descriptionDa Silva, M.L.P., Riveros, J.M., (1997) Int. J. Mass Spectrom. Ion Processes, 165-166, p. 83
dc.descriptionMurphy, M.K., Beauchamp, J.L., (1977) Inorg. Chem., 16, p. 2437
dc.descriptionLarson, J.W., McMahon, T.B., (1985) J. Am. Chem. Soc., 107, p. 766
dc.descriptionLarson, J.W., McMahon, T.B., (1987) Inorg. Chem., 26, p. 4018
dc.descriptionGordon, M.S., Davis, L.P., Burgraff, L.W., (1992), p. 203. , Advances in Gas Phase Ion Chemistry, N.G. Adams, L.M. Babcock (Eds.), JAI, Greenwich, CTReed, A.E., Schleyer, P.V.R., (1990) J. Am. Chem. Soc., 112, p. 1434
dc.descriptionCioslowsky, J., Piskorz, P., Schimeczek, M., Boche, G., (1998) J. Am. Chem. Soc., 120, p. 2612
dc.descriptionDamrauer, R., Krempp, M., Damrauer, N.H., Schmidt, M.W., Gordon, M.S., (1993) J. Am. Chem. Soc., 115, p. 5218
dc.descriptionMorgon, N.H., Riveros, J.M., (1998) J. Phys. Chem. A, 102, p. 10399
dc.descriptionMorgon, N.H., (1998) J. Phys. Chem. A, 102, p. 2050
dc.descriptionTanabe, F.K.J., Morgon, N.H., Riveros, J.M., (1996) J. Phys. Chem., 100, p. 2862
dc.descriptionMorgon, N.H., Linnert, H.V., Riveros, J.M., (1995) J. Phys. Chem., 99, p. 11667
dc.descriptionMorgon, N.H., Linnert, H.V., De Souza, L.A.G., Riveros, J.M., (1997) Chem. Phys. Lett., 275, p. 457
dc.descriptionFrisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Pople, J.A., (1995), GAUSSIAN 94, Revision D.2, Gaussian, Inc., Pittsburgh, PACramer, C.J., Squires, R.R., (1995) J. Am. Chem. Soc., 117, p. 9285
dc.descriptionHuheey, J.H., Keiter, E.A., Keiter, R.L., (1993), pp. A-30. , Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed., HarperCollins, New YorkAnderson, W.E., Sheridan, J., Gordy, W., (1951) Phys. Rev., 81, p. 819
dc.descriptionMallouk, T.E., Desbat, B., Bartlett, N., (1984) Inorg. Chem., 23, p. 3160
dc.descriptionMallouk, T.E., Rosenthal, G.L., Muller, G., Brusasco, R., Bartlett, N., (1984) Inorg. Chem., 23, p. 3167
dc.descriptionHarland, P.W., Cradock, S., Thynne, J.C., (1972) Int. J. Mass Spectrom. Ion Phys., 10, p. 169
dc.descriptionMurphy, M.K., Beauchamp, J.L., (1977) J. Am. Chem. Soc., 99, p. 4992
dc.descriptionWenthold, P.G., Squires, R.R., (1995) J. Phys. Chem., 99, p. 2002
dc.languageen
dc.publisher
dc.relationInternational Journal of Mass Spectrometry
dc.rightsfechado
dc.sourceScopus
dc.titleGas-phase Nucleophilic Reactions Of Ge(och3)4: Experimental And Computational Characterization Of Pentacoordinated Ge Anions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución