Actas de congresos
Thermal Considerations In Electrically-pumped Metallo-dielectric Nanolasers
Registro en:
9780819498939
Proceedings Of Spie - The International Society For Optical Engineering. Spie, v. 8980, n. , p. - , 2014.
0277786X
10.1117/12.2057412
2-s2.0-84901799111
Autor
Shane J.
Gu Q.
Vallini F.
Wingad B.
Smalley J.S.T.
Frateschi N.C.
Fainman Y.
Institución
Resumen
Metal nanocavity-based lasers show promise for dense integration in nanophotonic devices, thanks to their compact size and lack of crosstalk. Thermal considerations in these devices have been largely overlooked in design, despite the importance of self-heating and heat dissipation to device performance. We discuss the sources of self-heating in electrically-pumped wavelength-scale nanolasers, and the incorporation of these heat sources into a heat dissipation model to calculate laser operating temperature. We apply this thermal model to an example electrically-pumped nanolaser operating at room temperature. © 2014 SPIE. 8980
The Society of Photo-Optical Instrumentation Engineers (SPIE) Lee, J.H., Khajavikhan, M., Simic, A., Gu, Q., Bondarenko, O., Slutsky, B., Nezhad, M.P., Fainman, Y., Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers (2011) Optics Express, 19, pp. 21524-21531. , Oct Ding, K., Ning, C.Z., Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers (2013) Semiconductor Science and Technology, 28, p. 124002. , Nov Hill, M.T., Oei, Y.-S., Smalbrugge, B., Zhu, Y., De Vries, T., Van Veldhoven, P.J., Van Otten, F.W.M., Smit, M.K., Lasing in metallic-coated nanocavities (2007) Nature Photonics, 1, pp. 589-594. , Sept Nezhad, M.P., Simic, A., Bondarenko, O., Slutsky, B., Mizrahi, A., Feng, L., Lomakin, V., Fainman, Y., Room-temperature subwavelength metallo-dielectric lasers (2010) Nature Photonics, 4, pp. 395-399. , Apr Khajavikhan, M., Simic, A., Katz, M., Lee, J.H., Slutsky, B., Mizrahi, A., Lomakin, V., Fainman, Y., Thresholdless nanoscale coaxial lasers (2012) Nature, 482, pp. 204-207. , Jan Gu, Q., Slutsky, B., Vallini, F., Smalley, J.S.T., Nezhad, M.P., Frateschi, N.C., Fainman, Y., Purcell effect in sub-wavelength semiconductor lasers (2013) Optics Express, 21 (13), p. 15603 Ning, C.Z., What is Laser Threshold (2013) IEEE Journal of Selected Topics in Quantum Electronics, 19, pp. 1503604-1503604. , May Hess, O., Pendry, J.B., Maier, S.A., Oulton, R.F., Hamm, J.M., Tsakmakidis, K.L., Active nanoplasmonic metamaterials (2012) Nature Materials, 11, pp. 573-584. , July Ding, K., Hill, M.T., Liu, Z.C., Yin, L.J., Van Veldhoven, P.J., Ning, C.Z., Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature (2013) Optics Express, 21 (4), pp. 4728-4733 Hobson, W.S., Mohideen, U., Pearton, S.J., Slusher, R.E., Ren, F., SiN x/sulphide passivated GaAs/AlGaAs microdisk lasers (1993) Electronics Letters, 29 (25), pp. 2199-2200 Ding, K., Ning, C.Z., Metallic subwavelength-cavity semiconductor nanolasers (2012) Light: Science & Applications, 1, pp. e20. , July Ning, C.Z., Indik, R.A., Moloney, J.V., Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers (1995) JOSA B, 12 (10), pp. 1993-2004 Smalley, J.S.T., Gu, Q., Fainman, Y., Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers (2014) IEEE Journal of Quantum Electronics, 50, pp. 175-185. , Mar Yu, S.F., (2003), Analysis and design of vertical cavity surface emitting lasers, Wiley - VCH, JanSchmidt, N.M., Goldberg, Y.A., (1996) Handbook Series on Semiconductor Parameters Volume 2: Ternary and Quaternary III-V Compounds, 2. , Handbook Series on Semiconductor Parameters, World Scientific, London, Jan Schmidt, N.M., Goldberg, Y.A., (1996) Handbook Series on Semiconductor Parameters Volume 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb, 1. , Handbook Series on Semiconductor Parameters, World Scientific, London, Jan Zhang, P., Lau, Y.Y., Tang, W., Gomez, M.R., French, D.M., Zier, J.C., Gilgenbach, R.M., Contact resistance with dissimilar materials: Bulk contacts and thin film contacts (2011) Electrical Contacts (Holm) 2011 IEEE 57th Holm Conference, pp. 1-6. , IEEE, Sept Agrawal, G.P., Dutta, N.K., (1993) Semiconductor Lasers, , Van Nostrand Reinhold, New York, Jan Yoneoka, S., Lee, J., Liger, M., Yama, G., Kodama, T., Gunji, M., Provine, J., Kenny, T.W., Electrical and Thermal Conduction in Atomic Layer Deposition Nanobridges Down to 7 nm Thickness (2012) Nano Lett, 12, pp. 683-686. , Feb Wank, J.R., George, S.M., Weimer, A.W., Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD (2004) Powder Technology, 142, pp. 59-69. , Apr Dörre, E., Hübner, H., (1984) Alumina: Processing, Properties, and Applications, , Springer-Verlag, Berlin, Jan Kleiner, M.B., Kuhn, S.A., Weber, W., Thermal conductivity measurements of thin silicon dioxide films in integrated circuits (1996) Electron Devices, IEEE Transactions on, 43 (9), pp. 1602-1609 Adachi, S., (1992) Physical Properties of III-V Semiconductor Compounds, , John Wiley & Sons, Inc., Mörlenbach, Jan Lange, N.A., (1999) Lange's Handbook of Chemistry, , McGraw-Hill Professional 15 ed., Jan Andersson, S., Dzhavadov, L., Thermal conductivity and heat capacity of amorphous SiO2: Pressure and volume dependence (1992) Journal of Physics: Condensed Matter, 4 (29), p. 6209 Lide, D.R., (2003) CRC Handbook of Chemistry and Physics, CRC Press 84 Ed., , June Bassous, E., Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon (1978) IEEE Transactions on Electron Devices, 25, pp. 1178-1185. , Oct Cahill, D.G., Thermal conductivity measurement from 30 to 750 K: The 3 method (1990) Review of Scientific Instruments, 6 (12), p. 802 Cahill, D.G., Katiyar, M., Abelson, J.R., Thermal conductivity of alpha-Si:H thin films (1994) Physical Review B, 50 (9), p. 6077 Borca-Tasciuc, T., Kumar, A.R., Chen, G., Data reduction in 3 method for thin-film thermal conductivity determination (2001) Review of Scientific Instruments, 72 (4), p. 2139 Wang, R.Y., Segalman, R.A., Majumdar, A., Room temperature thermal conductance of alkanedithiol self-assembled monolayers (2006) Applied Physics Letters, 89 (17), p. 173113 Majumdar, A., Scanning thermal microscopy (1999) Annual Review of Materials Science, 29 (1), pp. 505-585 Kim, K., Jeong, W., Lee, W., Reddy, P., Ultra-high vacuum scanning thermalmicroscopy for nanometer resolution quantitative thermometry (2012) ACS Nano, 6, pp. 4248-4257. , May Shen, S., Henry, A., Tong, J., Zheng, R., Chen, G., Polyethylene nanofibres with very high thermal conductivities (2010) Nature Nanotechnology, pp. 1-5. , Mar Liu, Z., Shainline, J.M., Fernandes, G.E., Xu, J., Chen, J., Gmachl, C.F., Continuous-wave subwavelength microdisk lasers at λ = 1.53?m (2010) Optics Express, 18, pp. 19242-19248. , Aug Luo, T., Chen, G., Nanoscale heat transfer - From computation to experiment (2013) Physical Chemistry Chemical Physics, 15 (10), pp. 3389-3412