dc.creatorShane J.
dc.creatorGu Q.
dc.creatorVallini F.
dc.creatorWingad B.
dc.creatorSmalley J.S.T.
dc.creatorFrateschi N.C.
dc.creatorFainman Y.
dc.date2014
dc.date2015-06-25T17:56:39Z
dc.date2015-11-26T14:45:02Z
dc.date2015-06-25T17:56:39Z
dc.date2015-11-26T14:45:02Z
dc.date.accessioned2018-03-28T21:54:08Z
dc.date.available2018-03-28T21:54:08Z
dc.identifier9780819498939
dc.identifierProceedings Of Spie - The International Society For Optical Engineering. Spie, v. 8980, n. , p. - , 2014.
dc.identifier0277786X
dc.identifier10.1117/12.2057412
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84901799111&partnerID=40&md5=9e0b7466f3ad94b8b41e631dc8381f18
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87086
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87086
dc.identifier2-s2.0-84901799111
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1252350
dc.descriptionMetal nanocavity-based lasers show promise for dense integration in nanophotonic devices, thanks to their compact size and lack of crosstalk. Thermal considerations in these devices have been largely overlooked in design, despite the importance of self-heating and heat dissipation to device performance. We discuss the sources of self-heating in electrically-pumped wavelength-scale nanolasers, and the incorporation of these heat sources into a heat dissipation model to calculate laser operating temperature. We apply this thermal model to an example electrically-pumped nanolaser operating at room temperature. © 2014 SPIE.
dc.description8980
dc.description
dc.description
dc.description
dc.descriptionThe Society of Photo-Optical Instrumentation Engineers (SPIE)
dc.descriptionLee, J.H., Khajavikhan, M., Simic, A., Gu, Q., Bondarenko, O., Slutsky, B., Nezhad, M.P., Fainman, Y., Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers (2011) Optics Express, 19, pp. 21524-21531. , Oct
dc.descriptionDing, K., Ning, C.Z., Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers (2013) Semiconductor Science and Technology, 28, p. 124002. , Nov
dc.descriptionHill, M.T., Oei, Y.-S., Smalbrugge, B., Zhu, Y., De Vries, T., Van Veldhoven, P.J., Van Otten, F.W.M., Smit, M.K., Lasing in metallic-coated nanocavities (2007) Nature Photonics, 1, pp. 589-594. , Sept
dc.descriptionNezhad, M.P., Simic, A., Bondarenko, O., Slutsky, B., Mizrahi, A., Feng, L., Lomakin, V., Fainman, Y., Room-temperature subwavelength metallo-dielectric lasers (2010) Nature Photonics, 4, pp. 395-399. , Apr
dc.descriptionKhajavikhan, M., Simic, A., Katz, M., Lee, J.H., Slutsky, B., Mizrahi, A., Lomakin, V., Fainman, Y., Thresholdless nanoscale coaxial lasers (2012) Nature, 482, pp. 204-207. , Jan
dc.descriptionGu, Q., Slutsky, B., Vallini, F., Smalley, J.S.T., Nezhad, M.P., Frateschi, N.C., Fainman, Y., Purcell effect in sub-wavelength semiconductor lasers (2013) Optics Express, 21 (13), p. 15603
dc.descriptionNing, C.Z., What is Laser Threshold (2013) IEEE Journal of Selected Topics in Quantum Electronics, 19, pp. 1503604-1503604. , May
dc.descriptionHess, O., Pendry, J.B., Maier, S.A., Oulton, R.F., Hamm, J.M., Tsakmakidis, K.L., Active nanoplasmonic metamaterials (2012) Nature Materials, 11, pp. 573-584. , July
dc.descriptionDing, K., Hill, M.T., Liu, Z.C., Yin, L.J., Van Veldhoven, P.J., Ning, C.Z., Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature (2013) Optics Express, 21 (4), pp. 4728-4733
dc.descriptionHobson, W.S., Mohideen, U., Pearton, S.J., Slusher, R.E., Ren, F., SiN x/sulphide passivated GaAs/AlGaAs microdisk lasers (1993) Electronics Letters, 29 (25), pp. 2199-2200
dc.descriptionDing, K., Ning, C.Z., Metallic subwavelength-cavity semiconductor nanolasers (2012) Light: Science & Applications, 1, pp. e20. , July
dc.descriptionNing, C.Z., Indik, R.A., Moloney, J.V., Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers (1995) JOSA B, 12 (10), pp. 1993-2004
dc.descriptionSmalley, J.S.T., Gu, Q., Fainman, Y., Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers (2014) IEEE Journal of Quantum Electronics, 50, pp. 175-185. , Mar
dc.descriptionYu, S.F., (2003), Analysis and design of vertical cavity surface emitting lasers, Wiley - VCH, JanSchmidt, N.M., Goldberg, Y.A., (1996) Handbook Series on Semiconductor Parameters Volume 2: Ternary and Quaternary III-V Compounds, 2. , Handbook Series on Semiconductor Parameters, World Scientific, London, Jan
dc.descriptionSchmidt, N.M., Goldberg, Y.A., (1996) Handbook Series on Semiconductor Parameters Volume 1: Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb, 1. , Handbook Series on Semiconductor Parameters, World Scientific, London, Jan
dc.descriptionZhang, P., Lau, Y.Y., Tang, W., Gomez, M.R., French, D.M., Zier, J.C., Gilgenbach, R.M., Contact resistance with dissimilar materials: Bulk contacts and thin film contacts (2011) Electrical Contacts (Holm) 2011 IEEE 57th Holm Conference, pp. 1-6. , IEEE, Sept
dc.descriptionAgrawal, G.P., Dutta, N.K., (1993) Semiconductor Lasers, , Van Nostrand Reinhold, New York, Jan
dc.descriptionYoneoka, S., Lee, J., Liger, M., Yama, G., Kodama, T., Gunji, M., Provine, J., Kenny, T.W., Electrical and Thermal Conduction in Atomic Layer Deposition Nanobridges Down to 7 nm Thickness (2012) Nano Lett, 12, pp. 683-686. , Feb
dc.descriptionWank, J.R., George, S.M., Weimer, A.W., Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD (2004) Powder Technology, 142, pp. 59-69. , Apr
dc.descriptionDörre, E., Hübner, H., (1984) Alumina: Processing, Properties, and Applications, , Springer-Verlag, Berlin, Jan
dc.descriptionKleiner, M.B., Kuhn, S.A., Weber, W., Thermal conductivity measurements of thin silicon dioxide films in integrated circuits (1996) Electron Devices, IEEE Transactions on, 43 (9), pp. 1602-1609
dc.descriptionAdachi, S., (1992) Physical Properties of III-V Semiconductor Compounds, , John Wiley & Sons, Inc., Mörlenbach, Jan
dc.descriptionLange, N.A., (1999) Lange's Handbook of Chemistry, , McGraw-Hill Professional 15 ed., Jan
dc.descriptionAndersson, S., Dzhavadov, L., Thermal conductivity and heat capacity of amorphous SiO2: Pressure and volume dependence (1992) Journal of Physics: Condensed Matter, 4 (29), p. 6209
dc.descriptionLide, D.R., (2003) CRC Handbook of Chemistry and Physics, CRC Press 84 Ed., , June
dc.descriptionBassous, E., Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon (1978) IEEE Transactions on Electron Devices, 25, pp. 1178-1185. , Oct
dc.descriptionCahill, D.G., Thermal conductivity measurement from 30 to 750 K: The 3 method (1990) Review of Scientific Instruments, 6 (12), p. 802
dc.descriptionCahill, D.G., Katiyar, M., Abelson, J.R., Thermal conductivity of alpha-Si:H thin films (1994) Physical Review B, 50 (9), p. 6077
dc.descriptionBorca-Tasciuc, T., Kumar, A.R., Chen, G., Data reduction in 3 method for thin-film thermal conductivity determination (2001) Review of Scientific Instruments, 72 (4), p. 2139
dc.descriptionWang, R.Y., Segalman, R.A., Majumdar, A., Room temperature thermal conductance of alkanedithiol self-assembled monolayers (2006) Applied Physics Letters, 89 (17), p. 173113
dc.descriptionMajumdar, A., Scanning thermal microscopy (1999) Annual Review of Materials Science, 29 (1), pp. 505-585
dc.descriptionKim, K., Jeong, W., Lee, W., Reddy, P., Ultra-high vacuum scanning thermalmicroscopy for nanometer resolution quantitative thermometry (2012) ACS Nano, 6, pp. 4248-4257. , May
dc.descriptionShen, S., Henry, A., Tong, J., Zheng, R., Chen, G., Polyethylene nanofibres with very high thermal conductivities (2010) Nature Nanotechnology, pp. 1-5. , Mar
dc.descriptionLiu, Z., Shainline, J.M., Fernandes, G.E., Xu, J., Chen, J., Gmachl, C.F., Continuous-wave subwavelength microdisk lasers at λ = 1.53?m (2010) Optics Express, 18, pp. 19242-19248. , Aug
dc.descriptionLuo, T., Chen, G., Nanoscale heat transfer - From computation to experiment (2013) Physical Chemistry Chemical Physics, 15 (10), pp. 3389-3412
dc.languageen
dc.publisherSPIE
dc.relationProceedings of SPIE - The International Society for Optical Engineering
dc.rightsaberto
dc.sourceScopus
dc.titleThermal Considerations In Electrically-pumped Metallo-dielectric Nanolasers
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución