Artículos de revistas
Anchored Thiol Smectite Clay-kinetic And Thermodynamic Studies Of Divalent Copper And Cobalt Adsorption
Registro en:
Journal Of Solid State Chemistry. , v. 181, n. 9, p. 2507 - 2515, 2008.
224596
10.1016/j.jssc.2008.06.028
2-s2.0-51249123538
Autor
Guerra D.L.
Airoldi C.
Institución
Resumen
A natural smectite clay sample from Serra de Maicuru, Pará State, Brazil, had aluminum and zirconium polyoxycations inserted within the interlayer space. The precursor and pillarized smectites were organofunctionalized with the silyating agent 3-mercaptopropyltrimethoxysilane. The basal spacing of 1.47 nm for natural clay increased to 2.58 and 2.63 nm, for pillared aluminum, SAl/SH, and zirconium, SZr/SH, and increases in the surface area from 44 to 583 and 585 m2 g-1, respectively. These chemically immobilized clay samples adsorb divalent copper and cobalt cations from aqueous solutions of pH 5.0 at 298±1 K. The Langmuir, Redlich-Peterson and Toth adsorption isotherm models have been applied to fit the experimental data with a nonlinear approach. From the cation/basic center interactions for each smectite at the solid-liquid interface, by using van't Hoff methodology, the equilibrium constant and exothermic thermal effects were calculated. By considering the net interactive number of moles for each cation and the equilibrium constant, the enthalpy, ΔintH0 (-9.2±0.2 to -10.2±0.2 kJ mol-1) and negative Gibbs free energy, ΔintG0 (-23.9±0.1 to -28.7±0.1 kJ mol-1) were calculated. These values enabled the positive entropy, ΔintS0 (51.3±0.3 to 55.0±0.3 JK-1 mol-1) determination. The cation-sulfur interactive process is spontaneous in nature, reflecting the favorable enthalpic and entropic results. The kinetics of adsorption demonstrated that the fit is in agreement with a second-order model reaction with rate constant k2, varying from 4.8×10-2 to 15.0×10-2 and 3.9×10-2 to 12.2×10-2 mmol-1 min-1 for copper and cobalt, respectively. © 2008. 181 9 2507 2515 Bhattacharyya, K.G., Gupta, S.S., (2006) Colloids Surf. A, 277, p. 191 Manohar, D.M., Noeline, B.F., Anirudhan, T.S., (2006) Appl. Clay Sci., 31, p. 194 Bayramoglu, G., Bektas, S., Arica, M.Y., (2003) J. Hazard. Mater., 101, p. 285 Yu, B., Zang, Y., Shukla, A., Shukla, S.S., Dorris, K.L., (2000) J. Hazard. Mater., 80, p. 33 Tunney, J.J., Detellier, C., (1996) Chem. Mater., 8, p. 927 Wada, N., Raythatha, R., Minomura, S., (1987) Solid State Commun., 63, p. 783 Frost, R.L., Tran, T.H.T., Kristóf, J., (1997) Clay Miner., 32, p. 587 Temkin, N., Kadinci, E., Demirbas, O., Alkan, M., Kara, A.J., (2006) J. Colloid Interface Sci., 89, p. 472 Guerra, D.L., Lemos, V.P., Airoldi, C., Angélica, R.S., (2006) Polyhedron, 25, p. 2880 Airoldi, C., Roca, S., (1996) J. Mater. Chem., 6, p. 1963 Nunes, L.M., Airoldi, C., (2000) J. Solid State Chem., 154, p. 557 Nunes, L.M., Airoldi, C., (1999) Mater. Res. Bull., 34, p. 2121 Tsai, S.C., Juang, K.W., (2000) J. Radional. Nucl. Chem., 243, p. 741 Ruiz, V.S.O., Petrucelli, G.C., Airoldi, C., (2006) J. Mater. Chem., 16, p. 2338 Macedo, T.R., Petrucelli, G.C., Airoldi, C., (2007) Clay Clay Miner., 55, p. 151 Ogawa, M., Okutomo, S., Kuroda, K., (1998) J. Am. Chem. Soc., 120, p. 7361 Battacharyya, K.G., Gupta, S.S., (2005) Separ. Purif. Technol., 50, p. 388 Prado, A.G.S., Airoldi, C., (2001) Anal. Chim. Acta, 432, p. 201 Moore, D.M., Reynolds, R.C., (1989) X-ray Diffraction the Identification Analysis of Clay Minerals, , Oxford University Press pp. 179-201 Machado, R.S.A., Fonseca, M.G., Arakaki, L.N.H., Oliveira, S.F., (2004) Talanta, 63, p. 317 Machado, M.O., Lazarin, A.M., Airoldi, C., (2006) J. Chem. Thermodyn., 38, p. 130 Ruiz, V.S.O., Airoldi, C., (2004) Thermochim. Acta, 420, p. 73 Monteiro, O.A.C., Airoldi, C., (2005) J. Colloid Interface Sci., 282, p. 32 Lazarin, A.M., Airoldi, C., (2006) J. Mater. Chem., 18, p. 2226 Lima, C.B.A., Airoldi, C., (2002) Solid State Sci., 4, p. 1321 Fonseca, M.G., Simoni, J.A., Airoldi, C., (2001) Thermochim. Acta, 369, p. 17 Fonseca, M.G., Airoldi, C., (2000) Thermochim. Acta, 359, p. 1 Karadag, D., Koc, Y., Turan, M., Ozturk, M., (2007) J. Hazard. Mater., 144, p. 432 Ho, Y.S., (2006) Water Res., 40, p. 119 Al-Ashem, S., Duvnjak, Z., (1999) Water Air Soil Pollut., 114, p. 251 Padilha, P.D., Rocha, J.C., Moreira, J.C., Campos, J.T.D., Federici, C.D., (1997) Talanta, 45, p. 317 Fonseca, M.G., Airoldi, C., (1999) J. Chem. Soc. Dalton Trans., 42, p. 3687 Martin, A.I., Sanchez-Chaves, M., Arranz, F., (1999) React. Funct. Polym., 39, p. 179 Ho, Y.S., McKay, G., (1994) Process Biochem., 34, p. 431 Martinez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., Poch, J., (2006) J. Hazard. Mater. B, 133, p. 203 Ho, Y.S., (2006) J. Hazard. Mater., 136, p. 681