dc.creatorGuerra D.L.
dc.creatorAiroldi C.
dc.date2008
dc.date2015-06-30T19:19:51Z
dc.date2015-11-26T14:42:15Z
dc.date2015-06-30T19:19:51Z
dc.date2015-11-26T14:42:15Z
dc.date.accessioned2018-03-28T21:49:41Z
dc.date.available2018-03-28T21:49:41Z
dc.identifier
dc.identifierJournal Of Solid State Chemistry. , v. 181, n. 9, p. 2507 - 2515, 2008.
dc.identifier224596
dc.identifier10.1016/j.jssc.2008.06.028
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-51249123538&partnerID=40&md5=c8756f541c8a89c2cf1ef4dd467bc4bd
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105785
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105785
dc.identifier2-s2.0-51249123538
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1251182
dc.descriptionA natural smectite clay sample from Serra de Maicuru, Pará State, Brazil, had aluminum and zirconium polyoxycations inserted within the interlayer space. The precursor and pillarized smectites were organofunctionalized with the silyating agent 3-mercaptopropyltrimethoxysilane. The basal spacing of 1.47 nm for natural clay increased to 2.58 and 2.63 nm, for pillared aluminum, SAl/SH, and zirconium, SZr/SH, and increases in the surface area from 44 to 583 and 585 m2 g-1, respectively. These chemically immobilized clay samples adsorb divalent copper and cobalt cations from aqueous solutions of pH 5.0 at 298±1 K. The Langmuir, Redlich-Peterson and Toth adsorption isotherm models have been applied to fit the experimental data with a nonlinear approach. From the cation/basic center interactions for each smectite at the solid-liquid interface, by using van't Hoff methodology, the equilibrium constant and exothermic thermal effects were calculated. By considering the net interactive number of moles for each cation and the equilibrium constant, the enthalpy, ΔintH0 (-9.2±0.2 to -10.2±0.2 kJ mol-1) and negative Gibbs free energy, ΔintG0 (-23.9±0.1 to -28.7±0.1 kJ mol-1) were calculated. These values enabled the positive entropy, ΔintS0 (51.3±0.3 to 55.0±0.3 JK-1 mol-1) determination. The cation-sulfur interactive process is spontaneous in nature, reflecting the favorable enthalpic and entropic results. The kinetics of adsorption demonstrated that the fit is in agreement with a second-order model reaction with rate constant k2, varying from 4.8×10-2 to 15.0×10-2 and 3.9×10-2 to 12.2×10-2 mmol-1 min-1 for copper and cobalt, respectively. © 2008.
dc.description181
dc.description9
dc.description2507
dc.description2515
dc.descriptionBhattacharyya, K.G., Gupta, S.S., (2006) Colloids Surf. A, 277, p. 191
dc.descriptionManohar, D.M., Noeline, B.F., Anirudhan, T.S., (2006) Appl. Clay Sci., 31, p. 194
dc.descriptionBayramoglu, G., Bektas, S., Arica, M.Y., (2003) J. Hazard. Mater., 101, p. 285
dc.descriptionYu, B., Zang, Y., Shukla, A., Shukla, S.S., Dorris, K.L., (2000) J. Hazard. Mater., 80, p. 33
dc.descriptionTunney, J.J., Detellier, C., (1996) Chem. Mater., 8, p. 927
dc.descriptionWada, N., Raythatha, R., Minomura, S., (1987) Solid State Commun., 63, p. 783
dc.descriptionFrost, R.L., Tran, T.H.T., Kristóf, J., (1997) Clay Miner., 32, p. 587
dc.descriptionTemkin, N., Kadinci, E., Demirbas, O., Alkan, M., Kara, A.J., (2006) J. Colloid Interface Sci., 89, p. 472
dc.descriptionGuerra, D.L., Lemos, V.P., Airoldi, C., Angélica, R.S., (2006) Polyhedron, 25, p. 2880
dc.descriptionAiroldi, C., Roca, S., (1996) J. Mater. Chem., 6, p. 1963
dc.descriptionNunes, L.M., Airoldi, C., (2000) J. Solid State Chem., 154, p. 557
dc.descriptionNunes, L.M., Airoldi, C., (1999) Mater. Res. Bull., 34, p. 2121
dc.descriptionTsai, S.C., Juang, K.W., (2000) J. Radional. Nucl. Chem., 243, p. 741
dc.descriptionRuiz, V.S.O., Petrucelli, G.C., Airoldi, C., (2006) J. Mater. Chem., 16, p. 2338
dc.descriptionMacedo, T.R., Petrucelli, G.C., Airoldi, C., (2007) Clay Clay Miner., 55, p. 151
dc.descriptionOgawa, M., Okutomo, S., Kuroda, K., (1998) J. Am. Chem. Soc., 120, p. 7361
dc.descriptionBattacharyya, K.G., Gupta, S.S., (2005) Separ. Purif. Technol., 50, p. 388
dc.descriptionPrado, A.G.S., Airoldi, C., (2001) Anal. Chim. Acta, 432, p. 201
dc.descriptionMoore, D.M., Reynolds, R.C., (1989) X-ray Diffraction the Identification Analysis of Clay Minerals, , Oxford University Press pp. 179-201
dc.descriptionMachado, R.S.A., Fonseca, M.G., Arakaki, L.N.H., Oliveira, S.F., (2004) Talanta, 63, p. 317
dc.descriptionMachado, M.O., Lazarin, A.M., Airoldi, C., (2006) J. Chem. Thermodyn., 38, p. 130
dc.descriptionRuiz, V.S.O., Airoldi, C., (2004) Thermochim. Acta, 420, p. 73
dc.descriptionMonteiro, O.A.C., Airoldi, C., (2005) J. Colloid Interface Sci., 282, p. 32
dc.descriptionLazarin, A.M., Airoldi, C., (2006) J. Mater. Chem., 18, p. 2226
dc.descriptionLima, C.B.A., Airoldi, C., (2002) Solid State Sci., 4, p. 1321
dc.descriptionFonseca, M.G., Simoni, J.A., Airoldi, C., (2001) Thermochim. Acta, 369, p. 17
dc.descriptionFonseca, M.G., Airoldi, C., (2000) Thermochim. Acta, 359, p. 1
dc.descriptionKaradag, D., Koc, Y., Turan, M., Ozturk, M., (2007) J. Hazard. Mater., 144, p. 432
dc.descriptionHo, Y.S., (2006) Water Res., 40, p. 119
dc.descriptionAl-Ashem, S., Duvnjak, Z., (1999) Water Air Soil Pollut., 114, p. 251
dc.descriptionPadilha, P.D., Rocha, J.C., Moreira, J.C., Campos, J.T.D., Federici, C.D., (1997) Talanta, 45, p. 317
dc.descriptionFonseca, M.G., Airoldi, C., (1999) J. Chem. Soc. Dalton Trans., 42, p. 3687
dc.descriptionMartin, A.I., Sanchez-Chaves, M., Arranz, F., (1999) React. Funct. Polym., 39, p. 179
dc.descriptionHo, Y.S., McKay, G., (1994) Process Biochem., 34, p. 431
dc.descriptionMartinez, M., Miralles, N., Hidalgo, S., Fiol, N., Villaescusa, I., Poch, J., (2006) J. Hazard. Mater. B, 133, p. 203
dc.descriptionHo, Y.S., (2006) J. Hazard. Mater., 136, p. 681
dc.languageen
dc.publisher
dc.relationJournal of Solid State Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleAnchored Thiol Smectite Clay-kinetic And Thermodynamic Studies Of Divalent Copper And Cobalt Adsorption
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución