Brasil
| Artículos de revistas
Spatial Mating Networks In Insect-pollinated Plants
Registro en:
Ecology Letters. , v. 11, n. 5, p. 490 - 498, 2008.
1461023X
10.1111/j.1461-0248.2008.01167.x
2-s2.0-41849134288
Autor
Fortuna M.A.
Garcia C.
Guimaraes Jr. P.R.
Bascompte J.
Institución
Resumen
Gene flow in plant populations is largely determined by landscape heterogeneity. Both the shape of the pollination kernel and the spatial distribution of trees affect the distribution of pollen grains and the genotypes they harbour, but little is known about the relative contribution of each of these two factors. Using genetic markers we build a spatial network of pollination events between any two trees in a population of Prunus mahaleb, an insect-pollinated plant. Then, we apply tools from the science of complex networks to characterize the structure of such a mating network. Although the distribution of the number of pollen donors per tree is quite homogeneous, the identity of donors is distributed heterogeneously across the population. This results in a population structured in well-defined modules or compartments, formed by a group of mother trees and their shared pollen donors. Long-distance pollination events decrease the modular structure by favouring mating among all available mates. This increases gene flow across the entire population, reducing its genetic structure, and potentially decreasing the role of genetic drift. © 2008 Blackwell Publishing Ltd/CNRS. 11 5 490 498 Albert, R., Barabási, A.-L., Jeong, H., Error and attack tolerance in complex networks (2000) Nature, 406, pp. 378-382 Austerlitz, F., Smouse, P.E., Two-generation analysis of pollen flow across a landscape. II. Relation between Phi(ft), pollen dispersal and interfemale distance (2001) Genetics, 157, pp. 851-857 Austerlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Using genetic markers to estimate the pollen dispersal curve (2004) Mol. Ecol., 13, pp. 937-954 Barrett, S.C.H., Harder, L.D., Ecology and evolution of plant mating (1996) Trends Ecol. Evol., 11, pp. A73-A79 Bascompte, J., Networks in ecology (2007) Basic Appl. Ecol., 8, pp. 485-490 Campbell Grant, E.H., Lowe, W.H., Fagan, W.F., Living in the branches: Population dynamics and ecological processes in dendritic networks (2007) Ecol. Lett., 10, pp. 165-175 Dyer, R.J., Nason, J., Population graphs: The graph theoretic shape of genetic structure (2004) Mol. Ecol., 13, pp. 1713-1727 Epperson, B.K., (2003) Geographical Genetics., , Princeton University Press, Princeton Fortuna, M.A., Gómez-Rodríguez, C., Bascompte, J., Spatial network structure and amphibian persistence in stochastic environments (2006) Proc. R. Soc. Lond. B, 273, pp. 1429-1434 García, C., Arroyo, J.M., Godoy, J.A., Jordano, P., Mating patterns, pollen dispersal, and the ecological maternal neighbourhood in a Prunus mahaleb population (2005) Mol. Ecol., 14, pp. 1821-1830 García, C., Jordano, P., Godoy, J.A., Contemporary pollen and seed dispersal patterns and the spatial genetic structure in a Prunus mahaleb population (2007) Mol. Ecol., 16, pp. 1947-1955 Gérard, P.R., Klein, E.K., Austerlitz, F., Fernández- Manjarrés, J.F., Frascaria-Lacoste, N., Assortative mating and differential male mating success in an ash hybrid zone population (2006) BMC Evol. Biol., 6, p. 96 Godoy, J.A., Jordano, P., Seed dispersal by animals: Exact identification of source trees with endocarp DNA microsatellites (2001) Mol. Ecol., 10, pp. 2275-2283 Guimerà, R., Amaral, L.A.N., Functional cartography of complex metabolic networks (2005) Nature, 433, pp. 895-900 Hamrick, J.L., Murawski, D.A., Nason, J.D., The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations (1993) Vegetatio, 107-108, pp. 281-297 Jordano, P., Pollination biology of Prunus mahaleb deferred consequences of gender variation for fecundity and seed size (1993) Biol. J. Linnean Soc., 50, pp. 65-84 Jordano, P., Godoy, J.A., Frugivore-generated seed shadows: A landscape view of the demographic and genetic effects (2002) Seed Dispersal and Frugivory: Ecology, Evolution, and Conservation, pp. 305-321. , In: eds. Levey, D.J., Silva, W.R. Galetti, M.). CABI Publishing, Wallingford, UK, pp Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P., Optimization by simulated annealing (1983) Science, 220, pp. 671-680 Klein, E.K., Lavinge, C., Gouyan, P.-H., Mixing of propagules from discrete sources at long distances: Comparing a dispersal tail to an exponential (2006) BMC Ecol., 6, p. 3 Liepelt, S., Bialozyt, R., Ziegenhagen, B., Wind-dispersed pollen mediates postglacial gene flow among refugia (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 14590-14594 Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Aberg, Y., The web of human sexual contacts (2001) Nature, 411, pp. 907-908 May, R.M., Network structure and the biology of populations (2006) Trends Ecol. Evol., 21, pp. 394-399 Meagher, T.R., Vassiliadis, C., Spatial geometry determines gene flow in plant populations (2003) Genes in Environment: 15th Special Symposium of the British Ecological Society, pp. 76-90. , In: eds. Hails, R., Beringer, J. Godfray, H.C.). British Ecological Society, London, pp Newman, M.E.J., The structure of scientific collaboration networks (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 404-409 Newman, M.E.J., Modularity and community structure in networks (2006) Proc. Natl. Acad. Sci. USA, 113, pp. 8577-8582 Newman, M.E.J., Girvan, M., Finding and evaluating community structure in networks (2004) Phys. Rev. e, 69, p. 026113 Proulx, S.R., Promislow, D.E.L., Phillips, P.C., Network thinking in ecology and evolution (2005) Trends Ecol. Evol., 20, pp. 345-353 Robledo-Arnuncio, J.J., Alia, R., Gil, L., Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris (2004) Mol. Ecol., 13, pp. 2567-2577 Rosvall, M., Bergstrom, C.T., An information-theoretic framework for resolving community structure in complex networks (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 7327-7331 Savolainen, O., Pyhäjärvi, T., Knürr, T., Gene flow and local adaptation in trees (2007) Ann. Rev. Ecol. Syst., 38, pp. 595-619 Schick, R.S., Lindley, S., Directed connectivity among fish populations in a riverine network (2007) J. Appl. Ecol., 44, pp. 1116-1126 Sork, V.L., Nason, J., Campbell, D.R., Fernandez, J.F., Landscape approaches to historical and contemporary gene flow in plants (1999) Trends Ecol. Evol., 14, pp. 219-224 Urban, D., Keitt, T., Landscape connectivity: A graph-theoretic perspective (2001) Ecology, 82, pp. 1205-1218