dc.creatorFortuna M.A.
dc.creatorGarcia C.
dc.creatorGuimaraes Jr. P.R.
dc.creatorBascompte J.
dc.date2008
dc.date2015-06-30T19:19:30Z
dc.date2015-11-26T14:42:09Z
dc.date2015-06-30T19:19:30Z
dc.date2015-11-26T14:42:09Z
dc.date.accessioned2018-03-28T21:49:33Z
dc.date.available2018-03-28T21:49:33Z
dc.identifier
dc.identifierEcology Letters. , v. 11, n. 5, p. 490 - 498, 2008.
dc.identifier1461023X
dc.identifier10.1111/j.1461-0248.2008.01167.x
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-41849134288&partnerID=40&md5=2ae1d071b45eb258c55f0a38cacecdc4
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/105761
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/105761
dc.identifier2-s2.0-41849134288
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1251147
dc.descriptionGene flow in plant populations is largely determined by landscape heterogeneity. Both the shape of the pollination kernel and the spatial distribution of trees affect the distribution of pollen grains and the genotypes they harbour, but little is known about the relative contribution of each of these two factors. Using genetic markers we build a spatial network of pollination events between any two trees in a population of Prunus mahaleb, an insect-pollinated plant. Then, we apply tools from the science of complex networks to characterize the structure of such a mating network. Although the distribution of the number of pollen donors per tree is quite homogeneous, the identity of donors is distributed heterogeneously across the population. This results in a population structured in well-defined modules or compartments, formed by a group of mother trees and their shared pollen donors. Long-distance pollination events decrease the modular structure by favouring mating among all available mates. This increases gene flow across the entire population, reducing its genetic structure, and potentially decreasing the role of genetic drift. © 2008 Blackwell Publishing Ltd/CNRS.
dc.description11
dc.description5
dc.description490
dc.description498
dc.descriptionAlbert, R., Barabási, A.-L., Jeong, H., Error and attack tolerance in complex networks (2000) Nature, 406, pp. 378-382
dc.descriptionAusterlitz, F., Smouse, P.E., Two-generation analysis of pollen flow across a landscape. II. Relation between Phi(ft), pollen dispersal and interfemale distance (2001) Genetics, 157, pp. 851-857
dc.descriptionAusterlitz, F., Dick, C.W., Dutech, C., Klein, E.K., Oddou-Muratorio, S., Smouse, P.E., Using genetic markers to estimate the pollen dispersal curve (2004) Mol. Ecol., 13, pp. 937-954
dc.descriptionBarrett, S.C.H., Harder, L.D., Ecology and evolution of plant mating (1996) Trends Ecol. Evol., 11, pp. A73-A79
dc.descriptionBascompte, J., Networks in ecology (2007) Basic Appl. Ecol., 8, pp. 485-490
dc.descriptionCampbell Grant, E.H., Lowe, W.H., Fagan, W.F., Living in the branches: Population dynamics and ecological processes in dendritic networks (2007) Ecol. Lett., 10, pp. 165-175
dc.descriptionDyer, R.J., Nason, J., Population graphs: The graph theoretic shape of genetic structure (2004) Mol. Ecol., 13, pp. 1713-1727
dc.descriptionEpperson, B.K., (2003) Geographical Genetics., , Princeton University Press, Princeton
dc.descriptionFortuna, M.A., Gómez-Rodríguez, C., Bascompte, J., Spatial network structure and amphibian persistence in stochastic environments (2006) Proc. R. Soc. Lond. B, 273, pp. 1429-1434
dc.descriptionGarcía, C., Arroyo, J.M., Godoy, J.A., Jordano, P., Mating patterns, pollen dispersal, and the ecological maternal neighbourhood in a Prunus mahaleb population (2005) Mol. Ecol., 14, pp. 1821-1830
dc.descriptionGarcía, C., Jordano, P., Godoy, J.A., Contemporary pollen and seed dispersal patterns and the spatial genetic structure in a Prunus mahaleb population (2007) Mol. Ecol., 16, pp. 1947-1955
dc.descriptionGérard, P.R., Klein, E.K., Austerlitz, F., Fernández- Manjarrés, J.F., Frascaria-Lacoste, N., Assortative mating and differential male mating success in an ash hybrid zone population (2006) BMC Evol. Biol., 6, p. 96
dc.descriptionGodoy, J.A., Jordano, P., Seed dispersal by animals: Exact identification of source trees with endocarp DNA microsatellites (2001) Mol. Ecol., 10, pp. 2275-2283
dc.descriptionGuimerà, R., Amaral, L.A.N., Functional cartography of complex metabolic networks (2005) Nature, 433, pp. 895-900
dc.descriptionHamrick, J.L., Murawski, D.A., Nason, J.D., The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations (1993) Vegetatio, 107-108, pp. 281-297
dc.descriptionJordano, P., Pollination biology of Prunus mahaleb deferred consequences of gender variation for fecundity and seed size (1993) Biol. J. Linnean Soc., 50, pp. 65-84
dc.descriptionJordano, P., Godoy, J.A., Frugivore-generated seed shadows: A landscape view of the demographic and genetic effects (2002) Seed Dispersal and Frugivory: Ecology, Evolution, and Conservation, pp. 305-321. , In: eds. Levey, D.J., Silva, W.R. Galetti, M.). CABI Publishing, Wallingford, UK, pp
dc.descriptionKirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P., Optimization by simulated annealing (1983) Science, 220, pp. 671-680
dc.descriptionKlein, E.K., Lavinge, C., Gouyan, P.-H., Mixing of propagules from discrete sources at long distances: Comparing a dispersal tail to an exponential (2006) BMC Ecol., 6, p. 3
dc.descriptionLiepelt, S., Bialozyt, R., Ziegenhagen, B., Wind-dispersed pollen mediates postglacial gene flow among refugia (2002) Proc. Natl. Acad. Sci. USA, 99, pp. 14590-14594
dc.descriptionLiljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Aberg, Y., The web of human sexual contacts (2001) Nature, 411, pp. 907-908
dc.descriptionMay, R.M., Network structure and the biology of populations (2006) Trends Ecol. Evol., 21, pp. 394-399
dc.descriptionMeagher, T.R., Vassiliadis, C., Spatial geometry determines gene flow in plant populations (2003) Genes in Environment: 15th Special Symposium of the British Ecological Society, pp. 76-90. , In: eds. Hails, R., Beringer, J. Godfray, H.C.). British Ecological Society, London, pp
dc.descriptionNewman, M.E.J., The structure of scientific collaboration networks (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 404-409
dc.descriptionNewman, M.E.J., Modularity and community structure in networks (2006) Proc. Natl. Acad. Sci. USA, 113, pp. 8577-8582
dc.descriptionNewman, M.E.J., Girvan, M., Finding and evaluating community structure in networks (2004) Phys. Rev. e, 69, p. 026113
dc.descriptionProulx, S.R., Promislow, D.E.L., Phillips, P.C., Network thinking in ecology and evolution (2005) Trends Ecol. Evol., 20, pp. 345-353
dc.descriptionRobledo-Arnuncio, J.J., Alia, R., Gil, L., Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris (2004) Mol. Ecol., 13, pp. 2567-2577
dc.descriptionRosvall, M., Bergstrom, C.T., An information-theoretic framework for resolving community structure in complex networks (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 7327-7331
dc.descriptionSavolainen, O., Pyhäjärvi, T., Knürr, T., Gene flow and local adaptation in trees (2007) Ann. Rev. Ecol. Syst., 38, pp. 595-619
dc.descriptionSchick, R.S., Lindley, S., Directed connectivity among fish populations in a riverine network (2007) J. Appl. Ecol., 44, pp. 1116-1126
dc.descriptionSork, V.L., Nason, J., Campbell, D.R., Fernandez, J.F., Landscape approaches to historical and contemporary gene flow in plants (1999) Trends Ecol. Evol., 14, pp. 219-224
dc.descriptionUrban, D., Keitt, T., Landscape connectivity: A graph-theoretic perspective (2001) Ecology, 82, pp. 1205-1218
dc.languageen
dc.publisher
dc.relationEcology Letters
dc.rightsfechado
dc.sourceScopus
dc.titleSpatial Mating Networks In Insect-pollinated Plants
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución