Artículos de revistas
Efficient Finite-time Measurements Under Thermal Regimes
Registro en:
European Physical Journal Plus. Springer Verlag, v. 129, n. 10, p. 1 - 24, 2014.
21905444
10.1140/epjp/i2014-14206-0
2-s2.0-84919881553
Autor
Brasil C.A.
de Castro L.A.
de Jesus Napolitano R.
Institución
Resumen
Contrary to conventional quantum mechanics, which treats measurement as instantaneous, here we explore a model for finite-time measurement. The main two-level system interacts with the measurement apparatus in a Markovian way described by the Lindblad equation, and with an environment, which does not include the measuring apparatus. To analyse the environmental effects on the final density operator, we use the Redfield approach, allowing us to consider a non-Markovian noise. In the present hybrid theory, to trace out the environmental degrees of freedom, we use a previously developed analytic method based on superoperator algebra and Nakajima-Zwanzig superoperators. Here, we analyse two types of system-environment interaction, phase and amplitude damping, which allows us to conclude that, in general, a finite-time quantum measurement performed during a certain period is more efficient than an instantaneous measurement performed at the end of it, because the rate of change of the populations is attenuated by the system-measurement apparatus interaction. 129 10 1 24 Jammer, M., (1974) The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective, , Wiley, New York: Wheeler, J.A., Zurek, W.H., Quantum Theory and Measurement (Princeton University Press (1983) Princeton van der Waerden, B.L., Sources of Quantum Mechanics (North Holland Pub. Co (1967) Amsterdam Im, G.S., (1995) Arch. Hist. Exact Sci., 50, p. 73 Dirac, P.A.M., (1926) Proc. R. Soc. London Sect. A, 112, p. 661 Gottfried, K., (2011) Am. J. Phys., 79, p. 261 von Neumann, J., Mathematical Foundations of Quantum Mechanics (Princeton University Press (1953) Princeton Everett, H., III, (1957) Rev. Mod. Phys., 29, p. 454 Wheeler, J.A., (1957) Rev. Mod. Phys., 29, p. 463 Dewitt, B.S., Graham, N., (1973) The Many-Worlds Interpretation of Quantum Mechanics: A Fundamental Exposition by Hugh Everett, III, , Princeton University Press, Princeton: Freitas, F., Freire, O., Jr., (2008) Rev. Bras. Ensino Fís., 30, p. 2307 Peres, A., (2000) Phys. Rev. A, 61, p. 022116 Lindblad, G., (1976) Commun. Math. Phys., 48, p. 119 Breuer, H.-P., Petruccione, F., The Theory of Open Quantum Systems (Oxford University Press (2002) Oxford Brasil, C.A., Fanchini, F.F., Napolitano, R.J., (2013) Rev. Bras. Ensino Fís., 35, p. 1303 Percival, I., (1998) Quantum State Diffusion, , Cambridge University Press, Cambridge: Crasser, J.D., Barnett, S.M., Jeffers, J., Pegg, D.T., (2006) Opt. Commun., 264, p. 352 Brasil, C.A., Napolitano, R.J., (2011) Eur. Phys. J. Plus, 126, p. 91 Nakajima, S., (1958) Prog. Theor. Phys., 20, p. 948 Zwanzig, R., (1960) J. Chem. Phys., 33, p. 1338 Schulman, L.S., (1998) Phys. Rev. A, 57, p. 1509 Facchi, P., Pascazio, S., (2001) Fortschr. Phys., 49, p. 941 Jacobs, K., Steck, D.A., (2006) Contemp. Phys., 47, p. 279 Barchielli, A., Lanz, L., Prosperi, G.M., (1982) Nuovo Cimento B, 72, p. 79 Caves, M., Milburn, G.J., (1987) Phys. Rev. A, 36, p. 5543 Brasil, C.A., de Castro, L.A., Napolitano, R.J., (2011) Phys. Rev. A, 84, p. 022112 Brasil, C.A., de Castro, L.A., Napolitano, R.J., (2013) Found. Phys., 43, p. 642 Yan, Y., Zou, J., Xu, B.-M., Li, J.-G., Shao, B., (2013) Phys. Rev. A, 88, p. 032320 Wiseman, H.M., Milburn, G.J., (1993) Phys. Rev. Lett., 70, p. 548 Wiseman, H.M., (1994) Phys. Rev. A, 49, p. 2133 Reina, J.H., Quiroga, L., Johnson, N.F., (2002) Phys. Rev. A, 65, p. 032326 Lvovsky, A.I., Sanders, B.C., Tittel, W., (2009) Nature Photon., 3, p. 706 Misra, B., Sudarshan, E.C.G., (1977) J. Math. Phys., 18, p. 756 Nielsen, M.A., Chuang, I.L., (2000) Quantum Computation and Quantum Information, , Cambridge University Press, Cambridge: Piilo, J., (2009) Phys. Rev. A., 79, p. 062112 Aharonov, Y., Albert, D.Z., Vaidman, L., (1988) Phys. Rev. Lett., 60, p. 1351