dc.creator | Brasil C.A. | |
dc.creator | de Castro L.A. | |
dc.creator | de Jesus Napolitano R. | |
dc.date | 2014 | |
dc.date | 2015-06-25T17:55:54Z | |
dc.date | 2015-11-26T14:41:30Z | |
dc.date | 2015-06-25T17:55:54Z | |
dc.date | 2015-11-26T14:41:30Z | |
dc.date.accessioned | 2018-03-28T21:48:29Z | |
dc.date.available | 2018-03-28T21:48:29Z | |
dc.identifier | | |
dc.identifier | European Physical Journal Plus. Springer Verlag, v. 129, n. 10, p. 1 - 24, 2014. | |
dc.identifier | 21905444 | |
dc.identifier | 10.1140/epjp/i2014-14206-0 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84919881553&partnerID=40&md5=5bf69d55fffb5fac11b92be0666dabd7 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/86918 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/86918 | |
dc.identifier | 2-s2.0-84919881553 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1250872 | |
dc.description | Contrary to conventional quantum mechanics, which treats measurement as instantaneous, here we explore a model for finite-time measurement. The main two-level system interacts with the measurement apparatus in a Markovian way described by the Lindblad equation, and with an environment, which does not include the measuring apparatus. To analyse the environmental effects on the final density operator, we use the Redfield approach, allowing us to consider a non-Markovian noise. In the present hybrid theory, to trace out the environmental degrees of freedom, we use a previously developed analytic method based on superoperator algebra and Nakajima-Zwanzig superoperators. Here, we analyse two types of system-environment interaction, phase and amplitude damping, which allows us to conclude that, in general, a finite-time quantum measurement performed during a certain period is more efficient than an instantaneous measurement performed at the end of it, because the rate of change of the populations is attenuated by the system-measurement apparatus interaction. | |
dc.description | 129 | |
dc.description | 10 | |
dc.description | 1 | |
dc.description | 24 | |
dc.description | Jammer, M., (1974) The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective, , Wiley, New York: | |
dc.description | Wheeler, J.A., Zurek, W.H., Quantum Theory and Measurement (Princeton University Press (1983) Princeton | |
dc.description | van der Waerden, B.L., Sources of Quantum Mechanics (North Holland Pub. Co (1967) Amsterdam | |
dc.description | Im, G.S., (1995) Arch. Hist. Exact Sci., 50, p. 73 | |
dc.description | Dirac, P.A.M., (1926) Proc. R. Soc. London Sect. A, 112, p. 661 | |
dc.description | Gottfried, K., (2011) Am. J. Phys., 79, p. 261 | |
dc.description | von Neumann, J., Mathematical Foundations of Quantum Mechanics (Princeton University Press (1953) Princeton | |
dc.description | Everett, H., III, (1957) Rev. Mod. Phys., 29, p. 454 | |
dc.description | Wheeler, J.A., (1957) Rev. Mod. Phys., 29, p. 463 | |
dc.description | Dewitt, B.S., Graham, N., (1973) The Many-Worlds Interpretation of Quantum Mechanics: A Fundamental Exposition by Hugh Everett, III, , Princeton University Press, Princeton: | |
dc.description | Freitas, F., Freire, O., Jr., (2008) Rev. Bras. Ensino Fís., 30, p. 2307 | |
dc.description | Peres, A., (2000) Phys. Rev. A, 61, p. 022116 | |
dc.description | Lindblad, G., (1976) Commun. Math. Phys., 48, p. 119 | |
dc.description | Breuer, H.-P., Petruccione, F., The Theory of Open Quantum Systems (Oxford University Press (2002) Oxford | |
dc.description | Brasil, C.A., Fanchini, F.F., Napolitano, R.J., (2013) Rev. Bras. Ensino Fís., 35, p. 1303 | |
dc.description | Percival, I., (1998) Quantum State Diffusion, , Cambridge University Press, Cambridge: | |
dc.description | Crasser, J.D., Barnett, S.M., Jeffers, J., Pegg, D.T., (2006) Opt. Commun., 264, p. 352 | |
dc.description | Brasil, C.A., Napolitano, R.J., (2011) Eur. Phys. J. Plus, 126, p. 91 | |
dc.description | Nakajima, S., (1958) Prog. Theor. Phys., 20, p. 948 | |
dc.description | Zwanzig, R., (1960) J. Chem. Phys., 33, p. 1338 | |
dc.description | Schulman, L.S., (1998) Phys. Rev. A, 57, p. 1509 | |
dc.description | Facchi, P., Pascazio, S., (2001) Fortschr. Phys., 49, p. 941 | |
dc.description | Jacobs, K., Steck, D.A., (2006) Contemp. Phys., 47, p. 279 | |
dc.description | Barchielli, A., Lanz, L., Prosperi, G.M., (1982) Nuovo Cimento B, 72, p. 79 | |
dc.description | Caves, M., Milburn, G.J., (1987) Phys. Rev. A, 36, p. 5543 | |
dc.description | Brasil, C.A., de Castro, L.A., Napolitano, R.J., (2011) Phys. Rev. A, 84, p. 022112 | |
dc.description | Brasil, C.A., de Castro, L.A., Napolitano, R.J., (2013) Found. Phys., 43, p. 642 | |
dc.description | Yan, Y., Zou, J., Xu, B.-M., Li, J.-G., Shao, B., (2013) Phys. Rev. A, 88, p. 032320 | |
dc.description | Wiseman, H.M., Milburn, G.J., (1993) Phys. Rev. Lett., 70, p. 548 | |
dc.description | Wiseman, H.M., (1994) Phys. Rev. A, 49, p. 2133 | |
dc.description | Reina, J.H., Quiroga, L., Johnson, N.F., (2002) Phys. Rev. A, 65, p. 032326 | |
dc.description | Lvovsky, A.I., Sanders, B.C., Tittel, W., (2009) Nature Photon., 3, p. 706 | |
dc.description | Misra, B., Sudarshan, E.C.G., (1977) J. Math. Phys., 18, p. 756 | |
dc.description | Nielsen, M.A., Chuang, I.L., (2000) Quantum Computation and Quantum Information, , Cambridge University Press, Cambridge: | |
dc.description | Piilo, J., (2009) Phys. Rev. A., 79, p. 062112 | |
dc.description | Aharonov, Y., Albert, D.Z., Vaidman, L., (1988) Phys. Rev. Lett., 60, p. 1351 | |
dc.language | en | |
dc.publisher | Springer Verlag | |
dc.relation | European Physical Journal Plus | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Efficient Finite-time Measurements Under Thermal Regimes | |
dc.type | Artículos de revistas | |