dc.creatorBrasil C.A.
dc.creatorde Castro L.A.
dc.creatorde Jesus Napolitano R.
dc.date2014
dc.date2015-06-25T17:55:54Z
dc.date2015-11-26T14:41:30Z
dc.date2015-06-25T17:55:54Z
dc.date2015-11-26T14:41:30Z
dc.date.accessioned2018-03-28T21:48:29Z
dc.date.available2018-03-28T21:48:29Z
dc.identifier
dc.identifierEuropean Physical Journal Plus. Springer Verlag, v. 129, n. 10, p. 1 - 24, 2014.
dc.identifier21905444
dc.identifier10.1140/epjp/i2014-14206-0
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84919881553&partnerID=40&md5=5bf69d55fffb5fac11b92be0666dabd7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86918
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86918
dc.identifier2-s2.0-84919881553
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1250872
dc.descriptionContrary to conventional quantum mechanics, which treats measurement as instantaneous, here we explore a model for finite-time measurement. The main two-level system interacts with the measurement apparatus in a Markovian way described by the Lindblad equation, and with an environment, which does not include the measuring apparatus. To analyse the environmental effects on the final density operator, we use the Redfield approach, allowing us to consider a non-Markovian noise. In the present hybrid theory, to trace out the environmental degrees of freedom, we use a previously developed analytic method based on superoperator algebra and Nakajima-Zwanzig superoperators. Here, we analyse two types of system-environment interaction, phase and amplitude damping, which allows us to conclude that, in general, a finite-time quantum measurement performed during a certain period is more efficient than an instantaneous measurement performed at the end of it, because the rate of change of the populations is attenuated by the system-measurement apparatus interaction.
dc.description129
dc.description10
dc.description1
dc.description24
dc.descriptionJammer, M., (1974) The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective, , Wiley, New York:
dc.descriptionWheeler, J.A., Zurek, W.H., Quantum Theory and Measurement (Princeton University Press (1983) Princeton
dc.descriptionvan der Waerden, B.L., Sources of Quantum Mechanics (North Holland Pub. Co (1967) Amsterdam
dc.descriptionIm, G.S., (1995) Arch. Hist. Exact Sci., 50, p. 73
dc.descriptionDirac, P.A.M., (1926) Proc. R. Soc. London Sect. A, 112, p. 661
dc.descriptionGottfried, K., (2011) Am. J. Phys., 79, p. 261
dc.descriptionvon Neumann, J., Mathematical Foundations of Quantum Mechanics (Princeton University Press (1953) Princeton
dc.descriptionEverett, H., III, (1957) Rev. Mod. Phys., 29, p. 454
dc.descriptionWheeler, J.A., (1957) Rev. Mod. Phys., 29, p. 463
dc.descriptionDewitt, B.S., Graham, N., (1973) The Many-Worlds Interpretation of Quantum Mechanics: A Fundamental Exposition by Hugh Everett, III, , Princeton University Press, Princeton:
dc.descriptionFreitas, F., Freire, O., Jr., (2008) Rev. Bras. Ensino Fís., 30, p. 2307
dc.descriptionPeres, A., (2000) Phys. Rev. A, 61, p. 022116
dc.descriptionLindblad, G., (1976) Commun. Math. Phys., 48, p. 119
dc.descriptionBreuer, H.-P., Petruccione, F., The Theory of Open Quantum Systems (Oxford University Press (2002) Oxford
dc.descriptionBrasil, C.A., Fanchini, F.F., Napolitano, R.J., (2013) Rev. Bras. Ensino Fís., 35, p. 1303
dc.descriptionPercival, I., (1998) Quantum State Diffusion, , Cambridge University Press, Cambridge:
dc.descriptionCrasser, J.D., Barnett, S.M., Jeffers, J., Pegg, D.T., (2006) Opt. Commun., 264, p. 352
dc.descriptionBrasil, C.A., Napolitano, R.J., (2011) Eur. Phys. J. Plus, 126, p. 91
dc.descriptionNakajima, S., (1958) Prog. Theor. Phys., 20, p. 948
dc.descriptionZwanzig, R., (1960) J. Chem. Phys., 33, p. 1338
dc.descriptionSchulman, L.S., (1998) Phys. Rev. A, 57, p. 1509
dc.descriptionFacchi, P., Pascazio, S., (2001) Fortschr. Phys., 49, p. 941
dc.descriptionJacobs, K., Steck, D.A., (2006) Contemp. Phys., 47, p. 279
dc.descriptionBarchielli, A., Lanz, L., Prosperi, G.M., (1982) Nuovo Cimento B, 72, p. 79
dc.descriptionCaves, M., Milburn, G.J., (1987) Phys. Rev. A, 36, p. 5543
dc.descriptionBrasil, C.A., de Castro, L.A., Napolitano, R.J., (2011) Phys. Rev. A, 84, p. 022112
dc.descriptionBrasil, C.A., de Castro, L.A., Napolitano, R.J., (2013) Found. Phys., 43, p. 642
dc.descriptionYan, Y., Zou, J., Xu, B.-M., Li, J.-G., Shao, B., (2013) Phys. Rev. A, 88, p. 032320
dc.descriptionWiseman, H.M., Milburn, G.J., (1993) Phys. Rev. Lett., 70, p. 548
dc.descriptionWiseman, H.M., (1994) Phys. Rev. A, 49, p. 2133
dc.descriptionReina, J.H., Quiroga, L., Johnson, N.F., (2002) Phys. Rev. A, 65, p. 032326
dc.descriptionLvovsky, A.I., Sanders, B.C., Tittel, W., (2009) Nature Photon., 3, p. 706
dc.descriptionMisra, B., Sudarshan, E.C.G., (1977) J. Math. Phys., 18, p. 756
dc.descriptionNielsen, M.A., Chuang, I.L., (2000) Quantum Computation and Quantum Information, , Cambridge University Press, Cambridge:
dc.descriptionPiilo, J., (2009) Phys. Rev. A., 79, p. 062112
dc.descriptionAharonov, Y., Albert, D.Z., Vaidman, L., (1988) Phys. Rev. Lett., 60, p. 1351
dc.languageen
dc.publisherSpringer Verlag
dc.relationEuropean Physical Journal Plus
dc.rightsfechado
dc.sourceScopus
dc.titleEfficient Finite-time Measurements Under Thermal Regimes
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución