Artículos de revistas
Electrochemical Ozone Production As An Environmentally Friendly Technology For Water Treatment
Registro en:
Clean - Soil, Air, Water. , v. 36, n. 1, p. 34 - 44, 2008.
18630650
10.1002/clen.200700080
2-s2.0-38849193358
Autor
Franco D.V.
Jardim W.F.
Boodts J.F.C.
Da Silva L.M.
Institución
Resumen
Perspectives, advances and environmental aspects concerning electrochemical ozone production applied to water purification are presented and discussed in relation to the conventional corona process (silent electric discharge). Ozone generated using a laboratory-made electrochemical reactor was applied for the discoloration/degradation of dyes used in the Brazilian textile industry and for degradation of endocrine disruptors. A constant ozone load of 0.35 ± 0.02 g/h was used throughout. The study, concerning color removal from dye solutions, revealed that total discoloration is rapidly achieved. The degradation rate of the textile dyes evaluated by TOC is little affected by the dye composition and considerably influenced by the pH and ozonation time. Analysis of the COD/TOC-ratio indicates that ozonation increases oxidation feasibility of the organic matter (dye by-products) when compared to the original compounds. Ozonation of mixed aqueous solutions containing different endocrine disruptors revealed these compounds are totally degraded with a very high removal rate. © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 36 1 34 44 Baird, C., (2004) Environmental Chemistry, , 3th ed, W. H. Freeman and Company, New York Gogate, P., Pandit, A.B., hybrid methods (2004) Adv. Environ. Res, 8 (3-4), pp. 553-597. , A review of imperative technologies for wastewater treatment II Pontius, F.W., (1990) Water Quality and Treatment, , American Water Works Association, McGraw-Hill, New York Da Silva, L.M., Santana, M.H.P., Boodts, J.F.C., Electrochemistry and green chemical processes: Electrochemical ozone production (2003) Quim. Nova, 26 (6), pp. 880-888 Da Silva, L.M., Jardim, W.F., Trends and Strategies of Ozone Application in Environmental Problems (2006) Quim. Nova, 29 (2), pp. 310-317 Da Silva, L.M., de Faria, L.A., Boodts, J.F.C., Green processes for environmental application Electrochemical ozone production (2001) Pure Appl. Chem, 73 (12), pp. 1871-1884 Scott, K., (1995) Electrochemical Processes for Clean Technology, , Hartnolls, Cornwall, UK (1999) Alternative Disinfectants and Oxidants Guidance Manual, , EPA, Office of Water, US Environmental Protection Agency, Washington, D.C Masten, S.J.S., Davies, H.R., The use of ozonation to degrade organic contaminants in wastewaters (1994) Environ. Sci. Technol, 28 (4), pp. 181-185 Langlais, B., Reckhow, D.A., Brink, D.R., (1991) Ozone in Water Treatment: Application and Engineering, , CRC, Boca Raton Eckentelder Jr., W.W., (1989) Industrial Water Pollution Control, , 2nd ed, McGraw-Hill, New York Marco, A., Esplugas, S., Saum, G., How and why combine chemical and biological processes for wastewater treatment (1997) Wat. Sci. Technol, 35 (3), pp. 321-325 Anastas, P., Williamson, T., (1998) Green Chemistry, Theory and Practice, , Oxford University Press, Oxford Hoigné, J., (1988) The Chemistry of Ozone in Process Technologies for Water Treatment, , Plenum-Press, New York Diaper, E.W.J., (1972) Ozone in Water and Wastewater Treatment, p. 145. , Ed: F. L. Evans, Ann Arbor Science Szpyrkowicz, L., Juzzolino, C., Kaul, S.N., A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent (2001) Wat. Res, 35 (9), pp. 2129-2136 Meric, S., Kaptan, D., Ölmez, T., Colour and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process (2004) Chemosphere, 54 (3), pp. 435-441 Churchley, J.H., Ozone for dye waste colour removal: Four years experience at Leek STW (1998) Ozone Sci. Eng, 20 (2), pp. 111-120 Shu, H.Y., Huang, C.R., Degradation of commercial azo dyes in water using ozonation and UV enhanced ozonation processes (1995) Chemosphere, 31 (8), pp. 3813-3825 Arslan, I., Balcioglu, I.A., Tuhkanen, T., Bahnemann, D.W., H2O2/UV-C and Fe2/ H2O2/UV-C vs. TiO2/UV-A treatment for reactive dye wastewater (2000) J. Environ. Eng, 126 (3), pp. 903-910 Torrades, F., Montaño, J.G., Hortal, J.A.G., Domènech, X., Peral, J., Decolorization and mineralization of commercial reactive dyes under solar light assisted photo-Fenton conditions (2004) Solar Energy, 77 (5), pp. 573-581 Meriç, S., Selçuk, H., Belgiorno, V., Acute toxicity removal in textile finishing wastewater by Fenton's oxidation, ozone and coagulation-flocculation processes (2005) Wat. Res, 39 (6), pp. 1147-1153 Konsowa, A.H., Decolorization of wastewater containing direct dye by ozonation in a batch bubble column reactor (2003) Desalination, 158 (1), pp. 233-240 von Gunten, U., Ozonation of drinking water: Part I. Oxidation kinetics and product formation (2003) Wat. Res, 37 (3), pp. 1443-1467 U. von Gunten, Ozonation. of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Wat Res. 2003, 37 (3), 1469-1487Yao, C.C.D., Haag, W.R., Rate constants for direct reactions of ozone with several drinking water contaminants (1991) Wat. Res, 25 (7), pp. 761-773 Deborde, M., Rabonau, S., Dughet, J.-P., Legube, B., Kinetics of Aqueous Ozone-laduced Oxidation ofSome Endocrine Disruptors (2005) Environ. Sci. Technol, 39 (16), pp. 6086-6092 Mckenzie, K.S., Sarr, A.B., Mayura, K., Bailey, R.H., Miller, D.R., Rogers, T.D., Norred, W.P., Phillips, T.D., Oxidative Degradation and Detoxification of Mycotoxins Using a Novel Source of Ozone (1997) Food Chem. Toxicol, 35 (5), pp. 807-820 Hsu, Y.C., Chen, J.T., Yang, H.C., Chen, J.H., Decolorization of dyes using ozone in a gas-induced reactor (2001) AIJChE J, 47 (1), pp. 169-176 Stucki, S., Baumann, H., Christen, H., Kötz, R.J., Performance of a pressurized electrochemical ozone generator (1987) J. Appl. Electrochem, 17 (3), pp. 773-778 Stucki, S., Theis, G., Kötz, R., Devantay, H., Christen, H.J., In situ production of ozone in water using a membrel electrolyzer (1985) J. Electrochem. Soc, 132 (2), pp. 367-371 Hoigné, J., (1982) Handbook of Ozone Technology and Applications, p. 341. , Eds: R. G. Rice, A. Netzer, Ann Arbor Science N. Zoubov, M. Pourbaix, In Atlas of Electrochemical Equilibria in Aqueous Solutions (Ed: M. Pourbaix), NACE International 1974, p. 540Benbelkacem, H., Debellefontaine, H., Modeling of a gas-liquid reactor in batch conditions. Study of the intermediate regime when part of the reaction occurs within the film and part within the bulk (2003) Chem. Eng. Proc, 3 (42), pp. 723-732 H. Benbelkacem, H. Cano, S. Mathe, H. Debellefontaine, Maleic acid ozonation: reactor modeling and rate constants determination, Ozone Sci. Eng. 2003, (1) 25, 13-24M. T. Gao, M. Hirata, H. Takanashi, T. Hano, Ozone mass transfer in a new gas-liquid contactor-Karman contactor, Sep. Purif. Technol. 2005, (3) 42, 145-149Koide, K., Kato, S., Tanaka, Y., Kubota, H., Bubbles Generated from Porous Plate (1968) J. Chem. Eng.Japan, 1 (1), pp. 51-56 L. M. Da Silva, D. V. Franco, J. C. Forti, W. F. Jardim, J. F. C. Boodts, Characterization of a laboratory electrochemical ozonation system and its application in advanced oxidation processes, J. Appl. Electrochem. 2006, (3) 36, 523-530Suarasana, I., Mudurab, M., Chirab, R., Andreia, G., Munceleanua, I., Morara, R., A novel type ozonizer for wastewater treatment (2005) J. Electrostat, 63 (2), pp. 831-836 Martinez, P., Brandvold, D.K., Laboratory and field measurements of Nox produced from corona discharge (1996) Atmospher. Environ, 30 (24), pp. 4177-4182 Suarasan, I., Ghizdavu, L., Ghizdavu, I., Budu, S., Dascalescu, L., Experimental characterization of multi-point corona discharge devices for direct ozonization of liquids (2002) J. Electrostat, 54 (4), pp. 207-214 Wendt, H., Kreysa, G., (1999) Electrochemical Engineering: Science and technology in Chemistry and Other Industries, , Springer-Verlag, Berlin Foller, P.C., Tobias, C.W., The Anodic Evolution of Ozone (1982) J. Electrochem. Soc, 129 (3), pp. 506-515 Foller, P.C., Kelsall, G.H., Ozone generation via the electrolysis of fluoboric acid using glass carbon anodes and air depolarized cathodes (1993) J. Appl. Electrochem, 23 (4), pp. 996-1010 Foller, P., Goodwin, M.L., The Electrochemical Generation of High Concentration Ozone for Small-Scale Applications (1984) Ozone: Sci. Eng, 6 (2), pp. 29-36 Sundmacher, K., Rihko-Struckmann, L.K., Galvita, V., Solid electrolyte membrane reactors: Status and trends (2005) Catal. Today, 104 (5), pp. 185-199 Han, S.-D., Kim, J.D., Singh, K.C., Chaudhary, R.S., Electrochemical generation of ozone using solid polymer electrolyte-State of the art (2004) Indian J. Chem. A, 43, pp. 1599-1614 McIntyre, J., 100 Years of Industrial Electrochemistry (2002) J. Electrochem. Soc, 149 (10), pp. S79-S83 Couper, A.M., Pletcher, D., Walsh, F.C., Electrode Materials for Electrosynthesis (1990) Chem. Rev, 90 (5), pp. 837-865 Park, S.-G., Stable Ozone Generation by Using Boron-Doped Diamond Electrodes (2003) Russ. J. Electrochem, 39 (3), pp. 321-322 Katoh, M., Nishiki, Y., Nakamatsu, S., Polymer electrolyte-type electrochemical ozone generator with an oxygen cathode (1994) J. Appl. Electrochem, 24 (3), pp. 489-494 Arihara, K., Terashima, C., Fujishima, A., Electrochemical Production of High-Concentration Ozone-Water Using Freestanding Perforated Diamond Electrodes (2007) J. Electrochem. Soc, 154 (4), pp. E71-E75 Onda, K., Ohba, T., Kusunobi, H., Takezawa, S., Sunakawa, D., Araki, T., Improving Characteristics of Ozone Water Production with Multilayer electrodes and Operating Conditions in a Polymer Electrolyte Water Electrolysis Cell (2005) J. Electrochem. Soc, 152 (10), pp. D177-D183 Wang, Y.-H., Cheng, S., Chan, K.-Y., Synthesis of ozone from air via a polymer-electrolyte-membrane cell with a doped tin oxide anode (2006) Green Chem, 8 (3), pp. 568-572 Da Silva, L.M., de Faria, L.A., Boodts, J.F.C., Electrochemical ozone production: Influence of the supporting electrolyte on kinetics and current efficiency (2003) Electrochim. Acta, 48 (6), pp. 699-709 D. V. Franco, L. M. Da Silva, W. F. Jardim, J. F. C. Boodts, Influence of the Electrolyte Composition on the Kinetics ofthe Oxygen Evolution Reaction and Ozone Production Processes, J. Braz. Chem. Soc. 2006, (4) 17, 746-757Da Silva, L.M., Franco, D.V., de Faria, L.A., Boodts, J.F.C., Surface, kinetics and electrocatalytic properties ofTi/(IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production (2004) Electrochim. Acta, 49 (3), pp. 3977-3988 Selcuk, H., Sarikaya, H.Z., Bekbolet, M., Anderson, M.A., Bromate formation on the non-porous TiO2 photoanode in the photoelectrocatalyric system (2006) Chemosphere, 62 (3), pp. 715-721 Selcuk, H., Anderson, M.A., Effect of pH, charge separation and oxygen concentration in photoelectrocatalytic systems: Active chlorine production and chlorate formation (2005) Desalination, 176 (2), pp. 219-227 Potapova, G.F., Shestakova, O.V., Defining Specifications for Concentrated Ozone Production on type SU-1 Modules (1995) Russ. J. Electrochem, 31 (7), pp. 670-673 Babak, A.A., Fateev, V.N., Amadelli, R., Potapova, G.F., Ozone Electrosynthesis in an Electrolyzer with Solid Polymer Electrolyte (1994) Russ. J. Electrochem, 30 (6), pp. 739-741 Tatapudi, P., Fenton, J.M., Synthesis of Ozone in a Proton Exchange Membrane Electrochemical Reactor (1993) J. Electrochem. Soc, 140 (12), pp. 3527-3530 Ticianelli, E.A., Camara, G.A., Santos, G.R.A., Eletrocatálise das Reações de Oxidação de Hidrogênio e de Redução de Oxigênio (2003) Quim. Nova, 28 (4), pp. 664-669 Perry, M.L., Fuller, T.F., A Historical Perspective of Fuel Cell Technology in the 20th Century (2002) J. Electrochem. Soc, 149 (7), pp. S59-S67 (1989) Standard Methods for the Examination of Water and Wastewater, , American Public Health Association, 17th ed, APHA, Washington, D.C Hao, O.J., Kim, H., Chiang, P.C., Decolorization of Wastewater (2000) Crit. Rev. Environ. Sci. Technol, 30 (4), pp. 449-505 Whitlow, J.E., Roth, J.A., Heterogeneous ozonation kinetics of pollutants in wastewater (1988) Environ. Progress, 1 (7), pp. 52-57